Step |
Hyp |
Ref |
Expression |
1 |
|
binomcxp.a |
|- ( ph -> A e. RR+ ) |
2 |
|
binomcxp.b |
|- ( ph -> B e. RR ) |
3 |
|
binomcxp.lt |
|- ( ph -> ( abs ` B ) < ( abs ` A ) ) |
4 |
|
binomcxp.c |
|- ( ph -> C e. CC ) |
5 |
|
binomcxplem.f |
|- F = ( j e. NN0 |-> ( C _Cc j ) ) |
6 |
|
binomcxplem.s |
|- S = ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
7 |
|
binomcxplem.r |
|- R = sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) |
8 |
|
binomcxplem.e |
|- E = ( b e. CC |-> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
9 |
|
binomcxplem.d |
|- D = ( `' abs " ( 0 [,) R ) ) |
10 |
|
nfcv |
|- F/_ b `' abs |
11 |
|
nfcv |
|- F/_ b 0 |
12 |
|
nfcv |
|- F/_ b [,) |
13 |
|
nfcv |
|- F/_ b + |
14 |
|
nfmpt1 |
|- F/_ b ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
15 |
6 14
|
nfcxfr |
|- F/_ b S |
16 |
|
nfcv |
|- F/_ b r |
17 |
15 16
|
nffv |
|- F/_ b ( S ` r ) |
18 |
11 13 17
|
nfseq |
|- F/_ b seq 0 ( + , ( S ` r ) ) |
19 |
18
|
nfel1 |
|- F/ b seq 0 ( + , ( S ` r ) ) e. dom ~~> |
20 |
|
nfcv |
|- F/_ b RR |
21 |
19 20
|
nfrabw |
|- F/_ b { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } |
22 |
|
nfcv |
|- F/_ b RR* |
23 |
|
nfcv |
|- F/_ b < |
24 |
21 22 23
|
nfsup |
|- F/_ b sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) |
25 |
7 24
|
nfcxfr |
|- F/_ b R |
26 |
11 12 25
|
nfov |
|- F/_ b ( 0 [,) R ) |
27 |
10 26
|
nfima |
|- F/_ b ( `' abs " ( 0 [,) R ) ) |
28 |
9 27
|
nfcxfr |
|- F/_ b D |
29 |
|
nfcv |
|- F/_ y D |
30 |
|
nfcv |
|- F/_ y ( ( 1 + b ) ^c -u C ) |
31 |
|
nfcv |
|- F/_ b ( ( 1 + y ) ^c -u C ) |
32 |
|
oveq2 |
|- ( b = y -> ( 1 + b ) = ( 1 + y ) ) |
33 |
32
|
oveq1d |
|- ( b = y -> ( ( 1 + b ) ^c -u C ) = ( ( 1 + y ) ^c -u C ) ) |
34 |
28 29 30 31 33
|
cbvmptf |
|- ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) = ( y e. D |-> ( ( 1 + y ) ^c -u C ) ) |
35 |
34
|
oveq2i |
|- ( CC _D ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) = ( CC _D ( y e. D |-> ( ( 1 + y ) ^c -u C ) ) ) |
36 |
|
cnelprrecn |
|- CC e. { RR , CC } |
37 |
36
|
a1i |
|- ( ( ph /\ -. C e. NN0 ) -> CC e. { RR , CC } ) |
38 |
|
1cnd |
|- ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) -> 1 e. CC ) |
39 |
|
cnvimass |
|- ( `' abs " ( 0 [,) R ) ) C_ dom abs |
40 |
9 39
|
eqsstri |
|- D C_ dom abs |
41 |
|
absf |
|- abs : CC --> RR |
42 |
41
|
fdmi |
|- dom abs = CC |
43 |
40 42
|
sseqtri |
|- D C_ CC |
44 |
43
|
a1i |
|- ( ( ph /\ -. C e. NN0 ) -> D C_ CC ) |
45 |
44
|
sselda |
|- ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) -> y e. CC ) |
46 |
38 45
|
addcld |
|- ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) -> ( 1 + y ) e. CC ) |
47 |
|
simpr |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) /\ ( 1 + y ) e. RR ) -> ( 1 + y ) e. RR ) |
48 |
|
1cnd |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) /\ ( 1 + y ) e. RR ) -> 1 e. CC ) |
49 |
45
|
adantr |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) /\ ( 1 + y ) e. RR ) -> y e. CC ) |
50 |
48 49
|
pncan2d |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) /\ ( 1 + y ) e. RR ) -> ( ( 1 + y ) - 1 ) = y ) |
51 |
|
1red |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) /\ ( 1 + y ) e. RR ) -> 1 e. RR ) |
52 |
47 51
|
resubcld |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) /\ ( 1 + y ) e. RR ) -> ( ( 1 + y ) - 1 ) e. RR ) |
53 |
50 52
|
eqeltrrd |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) /\ ( 1 + y ) e. RR ) -> y e. RR ) |
54 |
|
1pneg1e0 |
|- ( 1 + -u 1 ) = 0 |
55 |
|
1red |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) /\ y e. RR ) -> 1 e. RR ) |
56 |
55
|
renegcld |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) /\ y e. RR ) -> -u 1 e. RR ) |
57 |
|
simpr |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) /\ y e. RR ) -> y e. RR ) |
58 |
|
ffn |
|- ( abs : CC --> RR -> abs Fn CC ) |
59 |
|
elpreima |
|- ( abs Fn CC -> ( y e. ( `' abs " ( 0 [,) R ) ) <-> ( y e. CC /\ ( abs ` y ) e. ( 0 [,) R ) ) ) ) |
60 |
41 58 59
|
mp2b |
|- ( y e. ( `' abs " ( 0 [,) R ) ) <-> ( y e. CC /\ ( abs ` y ) e. ( 0 [,) R ) ) ) |
61 |
60
|
simprbi |
|- ( y e. ( `' abs " ( 0 [,) R ) ) -> ( abs ` y ) e. ( 0 [,) R ) ) |
62 |
61 9
|
eleq2s |
|- ( y e. D -> ( abs ` y ) e. ( 0 [,) R ) ) |
63 |
|
0re |
|- 0 e. RR |
64 |
|
ssrab2 |
|- { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } C_ RR |
65 |
|
ressxr |
|- RR C_ RR* |
66 |
64 65
|
sstri |
|- { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } C_ RR* |
67 |
|
supxrcl |
|- ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } C_ RR* -> sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) e. RR* ) |
68 |
66 67
|
ax-mp |
|- sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) e. RR* |
69 |
7 68
|
eqeltri |
|- R e. RR* |
70 |
|
elico2 |
|- ( ( 0 e. RR /\ R e. RR* ) -> ( ( abs ` y ) e. ( 0 [,) R ) <-> ( ( abs ` y ) e. RR /\ 0 <_ ( abs ` y ) /\ ( abs ` y ) < R ) ) ) |
71 |
63 69 70
|
mp2an |
|- ( ( abs ` y ) e. ( 0 [,) R ) <-> ( ( abs ` y ) e. RR /\ 0 <_ ( abs ` y ) /\ ( abs ` y ) < R ) ) |
72 |
62 71
|
sylib |
|- ( y e. D -> ( ( abs ` y ) e. RR /\ 0 <_ ( abs ` y ) /\ ( abs ` y ) < R ) ) |
73 |
72
|
simp3d |
|- ( y e. D -> ( abs ` y ) < R ) |
74 |
73
|
adantl |
|- ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) -> ( abs ` y ) < R ) |
75 |
1 2 3 4 5 6 7
|
binomcxplemradcnv |
|- ( ( ph /\ -. C e. NN0 ) -> R = 1 ) |
76 |
75
|
adantr |
|- ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) -> R = 1 ) |
77 |
74 76
|
breqtrd |
|- ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) -> ( abs ` y ) < 1 ) |
78 |
77
|
adantr |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) /\ y e. RR ) -> ( abs ` y ) < 1 ) |
79 |
57 55
|
absltd |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) /\ y e. RR ) -> ( ( abs ` y ) < 1 <-> ( -u 1 < y /\ y < 1 ) ) ) |
80 |
78 79
|
mpbid |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) /\ y e. RR ) -> ( -u 1 < y /\ y < 1 ) ) |
81 |
80
|
simpld |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) /\ y e. RR ) -> -u 1 < y ) |
82 |
56 57 55 81
|
ltadd2dd |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) /\ y e. RR ) -> ( 1 + -u 1 ) < ( 1 + y ) ) |
83 |
54 82
|
eqbrtrrid |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) /\ y e. RR ) -> 0 < ( 1 + y ) ) |
84 |
53 83
|
syldan |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) /\ ( 1 + y ) e. RR ) -> 0 < ( 1 + y ) ) |
85 |
47 84
|
elrpd |
|- ( ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) /\ ( 1 + y ) e. RR ) -> ( 1 + y ) e. RR+ ) |
86 |
85
|
ex |
|- ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) -> ( ( 1 + y ) e. RR -> ( 1 + y ) e. RR+ ) ) |
87 |
|
eqid |
|- ( CC \ ( -oo (,] 0 ) ) = ( CC \ ( -oo (,] 0 ) ) |
88 |
87
|
ellogdm |
|- ( ( 1 + y ) e. ( CC \ ( -oo (,] 0 ) ) <-> ( ( 1 + y ) e. CC /\ ( ( 1 + y ) e. RR -> ( 1 + y ) e. RR+ ) ) ) |
89 |
46 86 88
|
sylanbrc |
|- ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) -> ( 1 + y ) e. ( CC \ ( -oo (,] 0 ) ) ) |
90 |
|
eldifi |
|- ( x e. ( CC \ ( -oo (,] 0 ) ) -> x e. CC ) |
91 |
90
|
adantl |
|- ( ( ( ph /\ -. C e. NN0 ) /\ x e. ( CC \ ( -oo (,] 0 ) ) ) -> x e. CC ) |
92 |
4
|
adantr |
|- ( ( ph /\ -. C e. NN0 ) -> C e. CC ) |
93 |
92
|
negcld |
|- ( ( ph /\ -. C e. NN0 ) -> -u C e. CC ) |
94 |
93
|
adantr |
|- ( ( ( ph /\ -. C e. NN0 ) /\ x e. ( CC \ ( -oo (,] 0 ) ) ) -> -u C e. CC ) |
95 |
91 94
|
cxpcld |
|- ( ( ( ph /\ -. C e. NN0 ) /\ x e. ( CC \ ( -oo (,] 0 ) ) ) -> ( x ^c -u C ) e. CC ) |
96 |
|
ovexd |
|- ( ( ( ph /\ -. C e. NN0 ) /\ x e. ( CC \ ( -oo (,] 0 ) ) ) -> ( -u C x. ( x ^c ( -u C - 1 ) ) ) e. _V ) |
97 |
|
1cnd |
|- ( ( ( ph /\ -. C e. NN0 ) /\ x e. CC ) -> 1 e. CC ) |
98 |
|
simpr |
|- ( ( ( ph /\ -. C e. NN0 ) /\ x e. CC ) -> x e. CC ) |
99 |
97 98
|
addcld |
|- ( ( ( ph /\ -. C e. NN0 ) /\ x e. CC ) -> ( 1 + x ) e. CC ) |
100 |
|
c0ex |
|- 0 e. _V |
101 |
100
|
a1i |
|- ( ( ( ph /\ -. C e. NN0 ) /\ x e. CC ) -> 0 e. _V ) |
102 |
|
1cnd |
|- ( ( ph /\ -. C e. NN0 ) -> 1 e. CC ) |
103 |
37 102
|
dvmptc |
|- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( x e. CC |-> 1 ) ) = ( x e. CC |-> 0 ) ) |
104 |
37
|
dvmptid |
|- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( x e. CC |-> x ) ) = ( x e. CC |-> 1 ) ) |
105 |
37 97 101 103 98 97 104
|
dvmptadd |
|- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( x e. CC |-> ( 1 + x ) ) ) = ( x e. CC |-> ( 0 + 1 ) ) ) |
106 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
107 |
106
|
mpteq2i |
|- ( x e. CC |-> ( 0 + 1 ) ) = ( x e. CC |-> 1 ) |
108 |
105 107
|
eqtrdi |
|- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( x e. CC |-> ( 1 + x ) ) ) = ( x e. CC |-> 1 ) ) |
109 |
|
fvex |
|- ( TopOpen ` CCfld ) e. _V |
110 |
|
cnfldtps |
|- CCfld e. TopSp |
111 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
112 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
113 |
111 112
|
tpsuni |
|- ( CCfld e. TopSp -> CC = U. ( TopOpen ` CCfld ) ) |
114 |
110 113
|
ax-mp |
|- CC = U. ( TopOpen ` CCfld ) |
115 |
114
|
restid |
|- ( ( TopOpen ` CCfld ) e. _V -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
116 |
109 115
|
ax-mp |
|- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
117 |
116
|
eqcomi |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
118 |
112
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
119 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
120 |
119
|
cnbl0 |
|- ( R e. RR* -> ( `' abs " ( 0 [,) R ) ) = ( 0 ( ball ` ( abs o. - ) ) R ) ) |
121 |
69 120
|
ax-mp |
|- ( `' abs " ( 0 [,) R ) ) = ( 0 ( ball ` ( abs o. - ) ) R ) |
122 |
9 121
|
eqtri |
|- D = ( 0 ( ball ` ( abs o. - ) ) R ) |
123 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
124 |
|
0cn |
|- 0 e. CC |
125 |
112
|
cnfldtopn |
|- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
126 |
125
|
blopn |
|- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ 0 e. CC /\ R e. RR* ) -> ( 0 ( ball ` ( abs o. - ) ) R ) e. ( TopOpen ` CCfld ) ) |
127 |
123 124 69 126
|
mp3an |
|- ( 0 ( ball ` ( abs o. - ) ) R ) e. ( TopOpen ` CCfld ) |
128 |
122 127
|
eqeltri |
|- D e. ( TopOpen ` CCfld ) |
129 |
|
isopn3i |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ D e. ( TopOpen ` CCfld ) ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` D ) = D ) |
130 |
118 128 129
|
mp2an |
|- ( ( int ` ( TopOpen ` CCfld ) ) ` D ) = D |
131 |
130
|
a1i |
|- ( ( ph /\ -. C e. NN0 ) -> ( ( int ` ( TopOpen ` CCfld ) ) ` D ) = D ) |
132 |
37 99 97 108 44 117 112 131
|
dvmptres2 |
|- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( x e. D |-> ( 1 + x ) ) ) = ( x e. D |-> 1 ) ) |
133 |
|
oveq2 |
|- ( x = y -> ( 1 + x ) = ( 1 + y ) ) |
134 |
133
|
cbvmptv |
|- ( x e. D |-> ( 1 + x ) ) = ( y e. D |-> ( 1 + y ) ) |
135 |
134
|
oveq2i |
|- ( CC _D ( x e. D |-> ( 1 + x ) ) ) = ( CC _D ( y e. D |-> ( 1 + y ) ) ) |
136 |
|
eqidd |
|- ( x = y -> 1 = 1 ) |
137 |
136
|
cbvmptv |
|- ( x e. D |-> 1 ) = ( y e. D |-> 1 ) |
138 |
132 135 137
|
3eqtr3g |
|- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( y e. D |-> ( 1 + y ) ) ) = ( y e. D |-> 1 ) ) |
139 |
87
|
dvcncxp1 |
|- ( -u C e. CC -> ( CC _D ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c -u C ) ) ) = ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( -u C x. ( x ^c ( -u C - 1 ) ) ) ) ) |
140 |
93 139
|
syl |
|- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( x ^c -u C ) ) ) = ( x e. ( CC \ ( -oo (,] 0 ) ) |-> ( -u C x. ( x ^c ( -u C - 1 ) ) ) ) ) |
141 |
|
oveq1 |
|- ( x = ( 1 + y ) -> ( x ^c -u C ) = ( ( 1 + y ) ^c -u C ) ) |
142 |
|
oveq1 |
|- ( x = ( 1 + y ) -> ( x ^c ( -u C - 1 ) ) = ( ( 1 + y ) ^c ( -u C - 1 ) ) ) |
143 |
142
|
oveq2d |
|- ( x = ( 1 + y ) -> ( -u C x. ( x ^c ( -u C - 1 ) ) ) = ( -u C x. ( ( 1 + y ) ^c ( -u C - 1 ) ) ) ) |
144 |
37 37 89 38 95 96 138 140 141 143
|
dvmptco |
|- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( y e. D |-> ( ( 1 + y ) ^c -u C ) ) ) = ( y e. D |-> ( ( -u C x. ( ( 1 + y ) ^c ( -u C - 1 ) ) ) x. 1 ) ) ) |
145 |
92
|
adantr |
|- ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) -> C e. CC ) |
146 |
145
|
negcld |
|- ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) -> -u C e. CC ) |
147 |
146 38
|
subcld |
|- ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) -> ( -u C - 1 ) e. CC ) |
148 |
46 147
|
cxpcld |
|- ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) -> ( ( 1 + y ) ^c ( -u C - 1 ) ) e. CC ) |
149 |
146 148
|
mulcld |
|- ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) -> ( -u C x. ( ( 1 + y ) ^c ( -u C - 1 ) ) ) e. CC ) |
150 |
149
|
mulid1d |
|- ( ( ( ph /\ -. C e. NN0 ) /\ y e. D ) -> ( ( -u C x. ( ( 1 + y ) ^c ( -u C - 1 ) ) ) x. 1 ) = ( -u C x. ( ( 1 + y ) ^c ( -u C - 1 ) ) ) ) |
151 |
150
|
mpteq2dva |
|- ( ( ph /\ -. C e. NN0 ) -> ( y e. D |-> ( ( -u C x. ( ( 1 + y ) ^c ( -u C - 1 ) ) ) x. 1 ) ) = ( y e. D |-> ( -u C x. ( ( 1 + y ) ^c ( -u C - 1 ) ) ) ) ) |
152 |
|
nfcv |
|- F/_ b ( -u C x. ( ( 1 + y ) ^c ( -u C - 1 ) ) ) |
153 |
|
nfcv |
|- F/_ y ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) |
154 |
|
oveq2 |
|- ( y = b -> ( 1 + y ) = ( 1 + b ) ) |
155 |
154
|
oveq1d |
|- ( y = b -> ( ( 1 + y ) ^c ( -u C - 1 ) ) = ( ( 1 + b ) ^c ( -u C - 1 ) ) ) |
156 |
155
|
oveq2d |
|- ( y = b -> ( -u C x. ( ( 1 + y ) ^c ( -u C - 1 ) ) ) = ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) ) |
157 |
29 28 152 153 156
|
cbvmptf |
|- ( y e. D |-> ( -u C x. ( ( 1 + y ) ^c ( -u C - 1 ) ) ) ) = ( b e. D |-> ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) ) |
158 |
157
|
a1i |
|- ( ( ph /\ -. C e. NN0 ) -> ( y e. D |-> ( -u C x. ( ( 1 + y ) ^c ( -u C - 1 ) ) ) ) = ( b e. D |-> ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) ) ) |
159 |
144 151 158
|
3eqtrd |
|- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( y e. D |-> ( ( 1 + y ) ^c -u C ) ) ) = ( b e. D |-> ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) ) ) |
160 |
35 159
|
syl5eq |
|- ( ( ph /\ -. C e. NN0 ) -> ( CC _D ( b e. D |-> ( ( 1 + b ) ^c -u C ) ) ) = ( b e. D |-> ( -u C x. ( ( 1 + b ) ^c ( -u C - 1 ) ) ) ) ) |