Step |
Hyp |
Ref |
Expression |
1 |
|
binomcxp.a |
|- ( ph -> A e. RR+ ) |
2 |
|
binomcxp.b |
|- ( ph -> B e. RR ) |
3 |
|
binomcxp.lt |
|- ( ph -> ( abs ` B ) < ( abs ` A ) ) |
4 |
|
binomcxp.c |
|- ( ph -> C e. CC ) |
5 |
|
binomcxplem.f |
|- F = ( j e. NN0 |-> ( C _Cc j ) ) |
6 |
|
binomcxplem.s |
|- S = ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
7 |
|
binomcxplem.r |
|- R = sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) |
8 |
|
binomcxplem.e |
|- E = ( b e. CC |-> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
9 |
|
binomcxplem.d |
|- D = ( `' abs " ( 0 [,) R ) ) |
10 |
|
binomcxplem.p |
|- P = ( b e. D |-> sum_ k e. NN0 ( ( S ` b ) ` k ) ) |
11 |
|
nfcv |
|- F/_ b `' abs |
12 |
|
nfcv |
|- F/_ b 0 |
13 |
|
nfcv |
|- F/_ b [,) |
14 |
|
nfcv |
|- F/_ b + |
15 |
|
nfmpt1 |
|- F/_ b ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
16 |
6 15
|
nfcxfr |
|- F/_ b S |
17 |
|
nfcv |
|- F/_ b r |
18 |
16 17
|
nffv |
|- F/_ b ( S ` r ) |
19 |
12 14 18
|
nfseq |
|- F/_ b seq 0 ( + , ( S ` r ) ) |
20 |
19
|
nfel1 |
|- F/ b seq 0 ( + , ( S ` r ) ) e. dom ~~> |
21 |
|
nfcv |
|- F/_ b RR |
22 |
20 21
|
nfrabw |
|- F/_ b { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } |
23 |
|
nfcv |
|- F/_ b RR* |
24 |
|
nfcv |
|- F/_ b < |
25 |
22 23 24
|
nfsup |
|- F/_ b sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) |
26 |
7 25
|
nfcxfr |
|- F/_ b R |
27 |
12 13 26
|
nfov |
|- F/_ b ( 0 [,) R ) |
28 |
11 27
|
nfima |
|- F/_ b ( `' abs " ( 0 [,) R ) ) |
29 |
9 28
|
nfcxfr |
|- F/_ b D |
30 |
|
nfcv |
|- F/_ y D |
31 |
|
nfcv |
|- F/_ y sum_ k e. NN0 ( ( S ` b ) ` k ) |
32 |
|
nfcv |
|- F/_ b NN0 |
33 |
|
nfcv |
|- F/_ b y |
34 |
16 33
|
nffv |
|- F/_ b ( S ` y ) |
35 |
|
nfcv |
|- F/_ b m |
36 |
34 35
|
nffv |
|- F/_ b ( ( S ` y ) ` m ) |
37 |
32 36
|
nfsum |
|- F/_ b sum_ m e. NN0 ( ( S ` y ) ` m ) |
38 |
|
simpl |
|- ( ( b = y /\ k e. NN0 ) -> b = y ) |
39 |
38
|
fveq2d |
|- ( ( b = y /\ k e. NN0 ) -> ( S ` b ) = ( S ` y ) ) |
40 |
39
|
fveq1d |
|- ( ( b = y /\ k e. NN0 ) -> ( ( S ` b ) ` k ) = ( ( S ` y ) ` k ) ) |
41 |
40
|
sumeq2dv |
|- ( b = y -> sum_ k e. NN0 ( ( S ` b ) ` k ) = sum_ k e. NN0 ( ( S ` y ) ` k ) ) |
42 |
|
nfcv |
|- F/_ m ( ( S ` y ) ` k ) |
43 |
|
nfcv |
|- F/_ k CC |
44 |
|
nfmpt1 |
|- F/_ k ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) |
45 |
43 44
|
nfmpt |
|- F/_ k ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
46 |
6 45
|
nfcxfr |
|- F/_ k S |
47 |
|
nfcv |
|- F/_ k y |
48 |
46 47
|
nffv |
|- F/_ k ( S ` y ) |
49 |
|
nfcv |
|- F/_ k m |
50 |
48 49
|
nffv |
|- F/_ k ( ( S ` y ) ` m ) |
51 |
|
fveq2 |
|- ( k = m -> ( ( S ` y ) ` k ) = ( ( S ` y ) ` m ) ) |
52 |
42 50 51
|
cbvsumi |
|- sum_ k e. NN0 ( ( S ` y ) ` k ) = sum_ m e. NN0 ( ( S ` y ) ` m ) |
53 |
41 52
|
eqtrdi |
|- ( b = y -> sum_ k e. NN0 ( ( S ` b ) ` k ) = sum_ m e. NN0 ( ( S ` y ) ` m ) ) |
54 |
29 30 31 37 53
|
cbvmptf |
|- ( b e. D |-> sum_ k e. NN0 ( ( S ` b ) ` k ) ) = ( y e. D |-> sum_ m e. NN0 ( ( S ` y ) ` m ) ) |
55 |
10 54
|
eqtri |
|- P = ( y e. D |-> sum_ m e. NN0 ( ( S ` y ) ` m ) ) |
56 |
|
ovexd |
|- ( ( ph /\ j e. NN0 ) -> ( C _Cc j ) e. _V ) |
57 |
5
|
a1i |
|- ( ph -> F = ( j e. NN0 |-> ( C _Cc j ) ) ) |
58 |
5
|
a1i |
|- ( ( ph /\ k e. NN0 ) -> F = ( j e. NN0 |-> ( C _Cc j ) ) ) |
59 |
|
simpr |
|- ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> j = k ) |
60 |
59
|
oveq2d |
|- ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> ( C _Cc j ) = ( C _Cc k ) ) |
61 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
62 |
4
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> C e. CC ) |
63 |
62 61
|
bcccl |
|- ( ( ph /\ k e. NN0 ) -> ( C _Cc k ) e. CC ) |
64 |
58 60 61 63
|
fvmptd |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( C _Cc k ) ) |
65 |
64 63
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. CC ) |
66 |
56 57 65
|
fmpt2d |
|- ( ph -> F : NN0 --> CC ) |
67 |
|
nfcv |
|- F/_ r RR |
68 |
|
nfcv |
|- F/_ z RR |
69 |
|
nfv |
|- F/ z seq 0 ( + , ( S ` r ) ) e. dom ~~> |
70 |
|
nfcv |
|- F/_ r 0 |
71 |
|
nfcv |
|- F/_ r + |
72 |
|
nfcv |
|- F/_ r ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
73 |
6 72
|
nfcxfr |
|- F/_ r S |
74 |
|
nfcv |
|- F/_ r z |
75 |
73 74
|
nffv |
|- F/_ r ( S ` z ) |
76 |
70 71 75
|
nfseq |
|- F/_ r seq 0 ( + , ( S ` z ) ) |
77 |
76
|
nfel1 |
|- F/ r seq 0 ( + , ( S ` z ) ) e. dom ~~> |
78 |
|
fveq2 |
|- ( r = z -> ( S ` r ) = ( S ` z ) ) |
79 |
78
|
seqeq3d |
|- ( r = z -> seq 0 ( + , ( S ` r ) ) = seq 0 ( + , ( S ` z ) ) ) |
80 |
79
|
eleq1d |
|- ( r = z -> ( seq 0 ( + , ( S ` r ) ) e. dom ~~> <-> seq 0 ( + , ( S ` z ) ) e. dom ~~> ) ) |
81 |
67 68 69 77 80
|
cbvrabw |
|- { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } = { z e. RR | seq 0 ( + , ( S ` z ) ) e. dom ~~> } |
82 |
81
|
supeq1i |
|- sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) = sup ( { z e. RR | seq 0 ( + , ( S ` z ) ) e. dom ~~> } , RR* , < ) |
83 |
7 82
|
eqtri |
|- R = sup ( { z e. RR | seq 0 ( + , ( S ` z ) ) e. dom ~~> } , RR* , < ) |
84 |
6
|
fveq1i |
|- ( S ` z ) = ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) |
85 |
|
seqeq3 |
|- ( ( S ` z ) = ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) -> seq 0 ( + , ( S ` z ) ) = seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) ) |
86 |
84 85
|
ax-mp |
|- seq 0 ( + , ( S ` z ) ) = seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) |
87 |
86
|
eleq1i |
|- ( seq 0 ( + , ( S ` z ) ) e. dom ~~> <-> seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> ) |
88 |
87
|
rabbii |
|- { z e. RR | seq 0 ( + , ( S ` z ) ) e. dom ~~> } = { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } |
89 |
88
|
supeq1i |
|- sup ( { z e. RR | seq 0 ( + , ( S ` z ) ) e. dom ~~> } , RR* , < ) = sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) |
90 |
7 82 89
|
3eqtrri |
|- sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) = R |
91 |
90
|
eleq1i |
|- ( sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR <-> R e. RR ) |
92 |
90
|
oveq2i |
|- ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) = ( ( abs ` x ) + R ) |
93 |
92
|
oveq1i |
|- ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) = ( ( ( abs ` x ) + R ) / 2 ) |
94 |
|
eqid |
|- ( ( abs ` x ) + 1 ) = ( ( abs ` x ) + 1 ) |
95 |
91 93 94
|
ifbieq12i |
|- if ( sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` x ) + 1 ) ) = if ( R e. RR , ( ( ( abs ` x ) + R ) / 2 ) , ( ( abs ` x ) + 1 ) ) |
96 |
|
oveq1 |
|- ( w = b -> ( w ^ k ) = ( b ^ k ) ) |
97 |
96
|
oveq2d |
|- ( w = b -> ( ( F ` k ) x. ( w ^ k ) ) = ( ( F ` k ) x. ( b ^ k ) ) ) |
98 |
97
|
mpteq2dv |
|- ( w = b -> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) = ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
99 |
98
|
cbvmptv |
|- ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) = ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
100 |
99
|
fveq1i |
|- ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) = ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) |
101 |
|
seqeq3 |
|- ( ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) = ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) -> seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) = seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) ) |
102 |
100 101
|
ax-mp |
|- seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) = seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) |
103 |
102
|
eleq1i |
|- ( seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> <-> seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> ) |
104 |
103
|
rabbii |
|- { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } = { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } |
105 |
104
|
supeq1i |
|- sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) = sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) |
106 |
105
|
eleq1i |
|- ( sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR <-> sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR ) |
107 |
105
|
oveq2i |
|- ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) = ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) |
108 |
107
|
oveq1i |
|- ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) = ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) |
109 |
106 108 94
|
ifbieq12i |
|- if ( sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` x ) + 1 ) ) = if ( sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` x ) + 1 ) ) |
110 |
109
|
oveq2i |
|- ( ( abs ` x ) + if ( sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` x ) + 1 ) ) ) = ( ( abs ` x ) + if ( sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` x ) + 1 ) ) ) |
111 |
110
|
oveq1i |
|- ( ( ( abs ` x ) + if ( sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` x ) + 1 ) ) ) / 2 ) = ( ( ( abs ` x ) + if ( sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` x ) + 1 ) ) ) / 2 ) |
112 |
111
|
oveq2i |
|- ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` x ) + if ( sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` x ) + 1 ) ) ) / 2 ) ) = ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` x ) + if ( sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` x ) + 1 ) ) ) / 2 ) ) |
113 |
6 55 66 83 9 95 112
|
pserdv2 |
|- ( ph -> ( CC _D P ) = ( y e. D |-> sum_ n e. NN ( ( n x. ( F ` n ) ) x. ( y ^ ( n - 1 ) ) ) ) ) |
114 |
|
cnvimass |
|- ( `' abs " ( 0 [,) R ) ) C_ dom abs |
115 |
9 114
|
eqsstri |
|- D C_ dom abs |
116 |
|
absf |
|- abs : CC --> RR |
117 |
116
|
fdmi |
|- dom abs = CC |
118 |
115 117
|
sseqtri |
|- D C_ CC |
119 |
118
|
sseli |
|- ( y e. D -> y e. CC ) |
120 |
8
|
a1i |
|- ( ( ph /\ y e. CC ) -> E = ( b e. CC |-> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) ) |
121 |
|
simplr |
|- ( ( ( ( ph /\ y e. CC ) /\ b = y ) /\ k e. NN ) -> b = y ) |
122 |
121
|
oveq1d |
|- ( ( ( ( ph /\ y e. CC ) /\ b = y ) /\ k e. NN ) -> ( b ^ ( k - 1 ) ) = ( y ^ ( k - 1 ) ) ) |
123 |
122
|
oveq2d |
|- ( ( ( ( ph /\ y e. CC ) /\ b = y ) /\ k e. NN ) -> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) = ( ( k x. ( F ` k ) ) x. ( y ^ ( k - 1 ) ) ) ) |
124 |
123
|
mpteq2dva |
|- ( ( ( ph /\ y e. CC ) /\ b = y ) -> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) = ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( y ^ ( k - 1 ) ) ) ) ) |
125 |
|
simpr |
|- ( ( ph /\ y e. CC ) -> y e. CC ) |
126 |
|
nnex |
|- NN e. _V |
127 |
126
|
mptex |
|- ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( y ^ ( k - 1 ) ) ) ) e. _V |
128 |
127
|
a1i |
|- ( ( ph /\ y e. CC ) -> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( y ^ ( k - 1 ) ) ) ) e. _V ) |
129 |
120 124 125 128
|
fvmptd |
|- ( ( ph /\ y e. CC ) -> ( E ` y ) = ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( y ^ ( k - 1 ) ) ) ) ) |
130 |
129
|
adantr |
|- ( ( ( ph /\ y e. CC ) /\ n e. NN ) -> ( E ` y ) = ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( y ^ ( k - 1 ) ) ) ) ) |
131 |
|
simpr |
|- ( ( ( ( ph /\ y e. CC ) /\ n e. NN ) /\ k = n ) -> k = n ) |
132 |
131
|
fveq2d |
|- ( ( ( ( ph /\ y e. CC ) /\ n e. NN ) /\ k = n ) -> ( F ` k ) = ( F ` n ) ) |
133 |
131 132
|
oveq12d |
|- ( ( ( ( ph /\ y e. CC ) /\ n e. NN ) /\ k = n ) -> ( k x. ( F ` k ) ) = ( n x. ( F ` n ) ) ) |
134 |
131
|
oveq1d |
|- ( ( ( ( ph /\ y e. CC ) /\ n e. NN ) /\ k = n ) -> ( k - 1 ) = ( n - 1 ) ) |
135 |
134
|
oveq2d |
|- ( ( ( ( ph /\ y e. CC ) /\ n e. NN ) /\ k = n ) -> ( y ^ ( k - 1 ) ) = ( y ^ ( n - 1 ) ) ) |
136 |
133 135
|
oveq12d |
|- ( ( ( ( ph /\ y e. CC ) /\ n e. NN ) /\ k = n ) -> ( ( k x. ( F ` k ) ) x. ( y ^ ( k - 1 ) ) ) = ( ( n x. ( F ` n ) ) x. ( y ^ ( n - 1 ) ) ) ) |
137 |
|
simpr |
|- ( ( ( ph /\ y e. CC ) /\ n e. NN ) -> n e. NN ) |
138 |
|
ovexd |
|- ( ( ( ph /\ y e. CC ) /\ n e. NN ) -> ( ( n x. ( F ` n ) ) x. ( y ^ ( n - 1 ) ) ) e. _V ) |
139 |
130 136 137 138
|
fvmptd |
|- ( ( ( ph /\ y e. CC ) /\ n e. NN ) -> ( ( E ` y ) ` n ) = ( ( n x. ( F ` n ) ) x. ( y ^ ( n - 1 ) ) ) ) |
140 |
139
|
sumeq2dv |
|- ( ( ph /\ y e. CC ) -> sum_ n e. NN ( ( E ` y ) ` n ) = sum_ n e. NN ( ( n x. ( F ` n ) ) x. ( y ^ ( n - 1 ) ) ) ) |
141 |
119 140
|
sylan2 |
|- ( ( ph /\ y e. D ) -> sum_ n e. NN ( ( E ` y ) ` n ) = sum_ n e. NN ( ( n x. ( F ` n ) ) x. ( y ^ ( n - 1 ) ) ) ) |
142 |
141
|
mpteq2dva |
|- ( ph -> ( y e. D |-> sum_ n e. NN ( ( E ` y ) ` n ) ) = ( y e. D |-> sum_ n e. NN ( ( n x. ( F ` n ) ) x. ( y ^ ( n - 1 ) ) ) ) ) |
143 |
113 142
|
eqtr4d |
|- ( ph -> ( CC _D P ) = ( y e. D |-> sum_ n e. NN ( ( E ` y ) ` n ) ) ) |
144 |
|
nfcv |
|- F/_ b NN |
145 |
|
nfmpt1 |
|- F/_ b ( b e. CC |-> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
146 |
8 145
|
nfcxfr |
|- F/_ b E |
147 |
146 33
|
nffv |
|- F/_ b ( E ` y ) |
148 |
|
nfcv |
|- F/_ b n |
149 |
147 148
|
nffv |
|- F/_ b ( ( E ` y ) ` n ) |
150 |
144 149
|
nfsum |
|- F/_ b sum_ n e. NN ( ( E ` y ) ` n ) |
151 |
|
nfcv |
|- F/_ y sum_ k e. NN ( ( E ` b ) ` k ) |
152 |
|
simpl |
|- ( ( y = b /\ n e. NN ) -> y = b ) |
153 |
152
|
fveq2d |
|- ( ( y = b /\ n e. NN ) -> ( E ` y ) = ( E ` b ) ) |
154 |
153
|
fveq1d |
|- ( ( y = b /\ n e. NN ) -> ( ( E ` y ) ` n ) = ( ( E ` b ) ` n ) ) |
155 |
154
|
sumeq2dv |
|- ( y = b -> sum_ n e. NN ( ( E ` y ) ` n ) = sum_ n e. NN ( ( E ` b ) ` n ) ) |
156 |
|
nfmpt1 |
|- F/_ k ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) |
157 |
43 156
|
nfmpt |
|- F/_ k ( b e. CC |-> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
158 |
8 157
|
nfcxfr |
|- F/_ k E |
159 |
|
nfcv |
|- F/_ k b |
160 |
158 159
|
nffv |
|- F/_ k ( E ` b ) |
161 |
|
nfcv |
|- F/_ k n |
162 |
160 161
|
nffv |
|- F/_ k ( ( E ` b ) ` n ) |
163 |
|
nfcv |
|- F/_ n ( ( E ` b ) ` k ) |
164 |
|
fveq2 |
|- ( n = k -> ( ( E ` b ) ` n ) = ( ( E ` b ) ` k ) ) |
165 |
162 163 164
|
cbvsumi |
|- sum_ n e. NN ( ( E ` b ) ` n ) = sum_ k e. NN ( ( E ` b ) ` k ) |
166 |
155 165
|
eqtrdi |
|- ( y = b -> sum_ n e. NN ( ( E ` y ) ` n ) = sum_ k e. NN ( ( E ` b ) ` k ) ) |
167 |
30 29 150 151 166
|
cbvmptf |
|- ( y e. D |-> sum_ n e. NN ( ( E ` y ) ` n ) ) = ( b e. D |-> sum_ k e. NN ( ( E ` b ) ` k ) ) |
168 |
143 167
|
eqtrdi |
|- ( ph -> ( CC _D P ) = ( b e. D |-> sum_ k e. NN ( ( E ` b ) ` k ) ) ) |