| Step |
Hyp |
Ref |
Expression |
| 1 |
|
binomcxp.a |
|- ( ph -> A e. RR+ ) |
| 2 |
|
binomcxp.b |
|- ( ph -> B e. RR ) |
| 3 |
|
binomcxp.lt |
|- ( ph -> ( abs ` B ) < ( abs ` A ) ) |
| 4 |
|
binomcxp.c |
|- ( ph -> C e. CC ) |
| 5 |
|
binomcxplem.f |
|- F = ( j e. NN0 |-> ( C _Cc j ) ) |
| 6 |
|
binomcxplem.s |
|- S = ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
| 7 |
|
binomcxplem.r |
|- R = sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) |
| 8 |
|
binomcxplem.e |
|- E = ( b e. CC |-> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
| 9 |
|
binomcxplem.d |
|- D = ( `' abs " ( 0 [,) R ) ) |
| 10 |
|
binomcxplem.p |
|- P = ( b e. D |-> sum_ k e. NN0 ( ( S ` b ) ` k ) ) |
| 11 |
|
nfcv |
|- F/_ b `' abs |
| 12 |
|
nfcv |
|- F/_ b 0 |
| 13 |
|
nfcv |
|- F/_ b [,) |
| 14 |
|
nfcv |
|- F/_ b + |
| 15 |
|
nfmpt1 |
|- F/_ b ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
| 16 |
6 15
|
nfcxfr |
|- F/_ b S |
| 17 |
|
nfcv |
|- F/_ b r |
| 18 |
16 17
|
nffv |
|- F/_ b ( S ` r ) |
| 19 |
12 14 18
|
nfseq |
|- F/_ b seq 0 ( + , ( S ` r ) ) |
| 20 |
19
|
nfel1 |
|- F/ b seq 0 ( + , ( S ` r ) ) e. dom ~~> |
| 21 |
|
nfcv |
|- F/_ b RR |
| 22 |
20 21
|
nfrabw |
|- F/_ b { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } |
| 23 |
|
nfcv |
|- F/_ b RR* |
| 24 |
|
nfcv |
|- F/_ b < |
| 25 |
22 23 24
|
nfsup |
|- F/_ b sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) |
| 26 |
7 25
|
nfcxfr |
|- F/_ b R |
| 27 |
12 13 26
|
nfov |
|- F/_ b ( 0 [,) R ) |
| 28 |
11 27
|
nfima |
|- F/_ b ( `' abs " ( 0 [,) R ) ) |
| 29 |
9 28
|
nfcxfr |
|- F/_ b D |
| 30 |
|
nfcv |
|- F/_ y D |
| 31 |
|
nfcv |
|- F/_ y sum_ k e. NN0 ( ( S ` b ) ` k ) |
| 32 |
|
nfcv |
|- F/_ b NN0 |
| 33 |
|
nfcv |
|- F/_ b y |
| 34 |
16 33
|
nffv |
|- F/_ b ( S ` y ) |
| 35 |
|
nfcv |
|- F/_ b m |
| 36 |
34 35
|
nffv |
|- F/_ b ( ( S ` y ) ` m ) |
| 37 |
32 36
|
nfsum |
|- F/_ b sum_ m e. NN0 ( ( S ` y ) ` m ) |
| 38 |
|
simpl |
|- ( ( b = y /\ k e. NN0 ) -> b = y ) |
| 39 |
38
|
fveq2d |
|- ( ( b = y /\ k e. NN0 ) -> ( S ` b ) = ( S ` y ) ) |
| 40 |
39
|
fveq1d |
|- ( ( b = y /\ k e. NN0 ) -> ( ( S ` b ) ` k ) = ( ( S ` y ) ` k ) ) |
| 41 |
40
|
sumeq2dv |
|- ( b = y -> sum_ k e. NN0 ( ( S ` b ) ` k ) = sum_ k e. NN0 ( ( S ` y ) ` k ) ) |
| 42 |
|
fveq2 |
|- ( k = m -> ( ( S ` y ) ` k ) = ( ( S ` y ) ` m ) ) |
| 43 |
|
nfcv |
|- F/_ m ( ( S ` y ) ` k ) |
| 44 |
|
nfcv |
|- F/_ k CC |
| 45 |
|
nfmpt1 |
|- F/_ k ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) |
| 46 |
44 45
|
nfmpt |
|- F/_ k ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
| 47 |
6 46
|
nfcxfr |
|- F/_ k S |
| 48 |
|
nfcv |
|- F/_ k y |
| 49 |
47 48
|
nffv |
|- F/_ k ( S ` y ) |
| 50 |
|
nfcv |
|- F/_ k m |
| 51 |
49 50
|
nffv |
|- F/_ k ( ( S ` y ) ` m ) |
| 52 |
42 43 51
|
cbvsum |
|- sum_ k e. NN0 ( ( S ` y ) ` k ) = sum_ m e. NN0 ( ( S ` y ) ` m ) |
| 53 |
41 52
|
eqtrdi |
|- ( b = y -> sum_ k e. NN0 ( ( S ` b ) ` k ) = sum_ m e. NN0 ( ( S ` y ) ` m ) ) |
| 54 |
29 30 31 37 53
|
cbvmptf |
|- ( b e. D |-> sum_ k e. NN0 ( ( S ` b ) ` k ) ) = ( y e. D |-> sum_ m e. NN0 ( ( S ` y ) ` m ) ) |
| 55 |
10 54
|
eqtri |
|- P = ( y e. D |-> sum_ m e. NN0 ( ( S ` y ) ` m ) ) |
| 56 |
|
ovexd |
|- ( ( ph /\ j e. NN0 ) -> ( C _Cc j ) e. _V ) |
| 57 |
5
|
a1i |
|- ( ph -> F = ( j e. NN0 |-> ( C _Cc j ) ) ) |
| 58 |
5
|
a1i |
|- ( ( ph /\ k e. NN0 ) -> F = ( j e. NN0 |-> ( C _Cc j ) ) ) |
| 59 |
|
simpr |
|- ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> j = k ) |
| 60 |
59
|
oveq2d |
|- ( ( ( ph /\ k e. NN0 ) /\ j = k ) -> ( C _Cc j ) = ( C _Cc k ) ) |
| 61 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
| 62 |
4
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> C e. CC ) |
| 63 |
62 61
|
bcccl |
|- ( ( ph /\ k e. NN0 ) -> ( C _Cc k ) e. CC ) |
| 64 |
58 60 61 63
|
fvmptd |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( C _Cc k ) ) |
| 65 |
64 63
|
eqeltrd |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. CC ) |
| 66 |
56 57 65
|
fmpt2d |
|- ( ph -> F : NN0 --> CC ) |
| 67 |
|
nfcv |
|- F/_ r RR |
| 68 |
|
nfcv |
|- F/_ z RR |
| 69 |
|
nfv |
|- F/ z seq 0 ( + , ( S ` r ) ) e. dom ~~> |
| 70 |
|
nfcv |
|- F/_ r 0 |
| 71 |
|
nfcv |
|- F/_ r + |
| 72 |
|
nfcv |
|- F/_ r ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
| 73 |
6 72
|
nfcxfr |
|- F/_ r S |
| 74 |
|
nfcv |
|- F/_ r z |
| 75 |
73 74
|
nffv |
|- F/_ r ( S ` z ) |
| 76 |
70 71 75
|
nfseq |
|- F/_ r seq 0 ( + , ( S ` z ) ) |
| 77 |
76
|
nfel1 |
|- F/ r seq 0 ( + , ( S ` z ) ) e. dom ~~> |
| 78 |
|
fveq2 |
|- ( r = z -> ( S ` r ) = ( S ` z ) ) |
| 79 |
78
|
seqeq3d |
|- ( r = z -> seq 0 ( + , ( S ` r ) ) = seq 0 ( + , ( S ` z ) ) ) |
| 80 |
79
|
eleq1d |
|- ( r = z -> ( seq 0 ( + , ( S ` r ) ) e. dom ~~> <-> seq 0 ( + , ( S ` z ) ) e. dom ~~> ) ) |
| 81 |
67 68 69 77 80
|
cbvrabw |
|- { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } = { z e. RR | seq 0 ( + , ( S ` z ) ) e. dom ~~> } |
| 82 |
81
|
supeq1i |
|- sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) = sup ( { z e. RR | seq 0 ( + , ( S ` z ) ) e. dom ~~> } , RR* , < ) |
| 83 |
7 82
|
eqtri |
|- R = sup ( { z e. RR | seq 0 ( + , ( S ` z ) ) e. dom ~~> } , RR* , < ) |
| 84 |
6
|
fveq1i |
|- ( S ` z ) = ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) |
| 85 |
|
seqeq3 |
|- ( ( S ` z ) = ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) -> seq 0 ( + , ( S ` z ) ) = seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) ) |
| 86 |
84 85
|
ax-mp |
|- seq 0 ( + , ( S ` z ) ) = seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) |
| 87 |
86
|
eleq1i |
|- ( seq 0 ( + , ( S ` z ) ) e. dom ~~> <-> seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> ) |
| 88 |
87
|
rabbii |
|- { z e. RR | seq 0 ( + , ( S ` z ) ) e. dom ~~> } = { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } |
| 89 |
88
|
supeq1i |
|- sup ( { z e. RR | seq 0 ( + , ( S ` z ) ) e. dom ~~> } , RR* , < ) = sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) |
| 90 |
7 82 89
|
3eqtrri |
|- sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) = R |
| 91 |
90
|
eleq1i |
|- ( sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR <-> R e. RR ) |
| 92 |
90
|
oveq2i |
|- ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) = ( ( abs ` x ) + R ) |
| 93 |
92
|
oveq1i |
|- ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) = ( ( ( abs ` x ) + R ) / 2 ) |
| 94 |
|
eqid |
|- ( ( abs ` x ) + 1 ) = ( ( abs ` x ) + 1 ) |
| 95 |
91 93 94
|
ifbieq12i |
|- if ( sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` x ) + 1 ) ) = if ( R e. RR , ( ( ( abs ` x ) + R ) / 2 ) , ( ( abs ` x ) + 1 ) ) |
| 96 |
|
oveq1 |
|- ( w = b -> ( w ^ k ) = ( b ^ k ) ) |
| 97 |
96
|
oveq2d |
|- ( w = b -> ( ( F ` k ) x. ( w ^ k ) ) = ( ( F ` k ) x. ( b ^ k ) ) ) |
| 98 |
97
|
mpteq2dv |
|- ( w = b -> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) = ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
| 99 |
98
|
cbvmptv |
|- ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) = ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
| 100 |
99
|
fveq1i |
|- ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) = ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) |
| 101 |
|
seqeq3 |
|- ( ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) = ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) -> seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) = seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) ) |
| 102 |
100 101
|
ax-mp |
|- seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) = seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) |
| 103 |
102
|
eleq1i |
|- ( seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> <-> seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> ) |
| 104 |
103
|
rabbii |
|- { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } = { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } |
| 105 |
104
|
supeq1i |
|- sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) = sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) |
| 106 |
105
|
eleq1i |
|- ( sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR <-> sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR ) |
| 107 |
105
|
oveq2i |
|- ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) = ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) |
| 108 |
107
|
oveq1i |
|- ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) = ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) |
| 109 |
106 108 94
|
ifbieq12i |
|- if ( sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` x ) + 1 ) ) = if ( sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` x ) + 1 ) ) |
| 110 |
109
|
oveq2i |
|- ( ( abs ` x ) + if ( sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` x ) + 1 ) ) ) = ( ( abs ` x ) + if ( sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` x ) + 1 ) ) ) |
| 111 |
110
|
oveq1i |
|- ( ( ( abs ` x ) + if ( sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` x ) + 1 ) ) ) / 2 ) = ( ( ( abs ` x ) + if ( sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` x ) + 1 ) ) ) / 2 ) |
| 112 |
111
|
oveq2i |
|- ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` x ) + if ( sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( w e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( w ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` x ) + 1 ) ) ) / 2 ) ) = ( 0 ( ball ` ( abs o. - ) ) ( ( ( abs ` x ) + if ( sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) e. RR , ( ( ( abs ` x ) + sup ( { z e. RR | seq 0 ( + , ( ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) ` z ) ) e. dom ~~> } , RR* , < ) ) / 2 ) , ( ( abs ` x ) + 1 ) ) ) / 2 ) ) |
| 113 |
6 55 66 83 9 95 112
|
pserdv2 |
|- ( ph -> ( CC _D P ) = ( y e. D |-> sum_ n e. NN ( ( n x. ( F ` n ) ) x. ( y ^ ( n - 1 ) ) ) ) ) |
| 114 |
|
cnvimass |
|- ( `' abs " ( 0 [,) R ) ) C_ dom abs |
| 115 |
9 114
|
eqsstri |
|- D C_ dom abs |
| 116 |
|
absf |
|- abs : CC --> RR |
| 117 |
116
|
fdmi |
|- dom abs = CC |
| 118 |
115 117
|
sseqtri |
|- D C_ CC |
| 119 |
118
|
sseli |
|- ( y e. D -> y e. CC ) |
| 120 |
8
|
a1i |
|- ( ( ph /\ y e. CC ) -> E = ( b e. CC |-> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) ) |
| 121 |
|
simplr |
|- ( ( ( ( ph /\ y e. CC ) /\ b = y ) /\ k e. NN ) -> b = y ) |
| 122 |
121
|
oveq1d |
|- ( ( ( ( ph /\ y e. CC ) /\ b = y ) /\ k e. NN ) -> ( b ^ ( k - 1 ) ) = ( y ^ ( k - 1 ) ) ) |
| 123 |
122
|
oveq2d |
|- ( ( ( ( ph /\ y e. CC ) /\ b = y ) /\ k e. NN ) -> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) = ( ( k x. ( F ` k ) ) x. ( y ^ ( k - 1 ) ) ) ) |
| 124 |
123
|
mpteq2dva |
|- ( ( ( ph /\ y e. CC ) /\ b = y ) -> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) = ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( y ^ ( k - 1 ) ) ) ) ) |
| 125 |
|
simpr |
|- ( ( ph /\ y e. CC ) -> y e. CC ) |
| 126 |
|
nnex |
|- NN e. _V |
| 127 |
126
|
mptex |
|- ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( y ^ ( k - 1 ) ) ) ) e. _V |
| 128 |
127
|
a1i |
|- ( ( ph /\ y e. CC ) -> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( y ^ ( k - 1 ) ) ) ) e. _V ) |
| 129 |
120 124 125 128
|
fvmptd |
|- ( ( ph /\ y e. CC ) -> ( E ` y ) = ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( y ^ ( k - 1 ) ) ) ) ) |
| 130 |
129
|
adantr |
|- ( ( ( ph /\ y e. CC ) /\ n e. NN ) -> ( E ` y ) = ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( y ^ ( k - 1 ) ) ) ) ) |
| 131 |
|
simpr |
|- ( ( ( ( ph /\ y e. CC ) /\ n e. NN ) /\ k = n ) -> k = n ) |
| 132 |
131
|
fveq2d |
|- ( ( ( ( ph /\ y e. CC ) /\ n e. NN ) /\ k = n ) -> ( F ` k ) = ( F ` n ) ) |
| 133 |
131 132
|
oveq12d |
|- ( ( ( ( ph /\ y e. CC ) /\ n e. NN ) /\ k = n ) -> ( k x. ( F ` k ) ) = ( n x. ( F ` n ) ) ) |
| 134 |
131
|
oveq1d |
|- ( ( ( ( ph /\ y e. CC ) /\ n e. NN ) /\ k = n ) -> ( k - 1 ) = ( n - 1 ) ) |
| 135 |
134
|
oveq2d |
|- ( ( ( ( ph /\ y e. CC ) /\ n e. NN ) /\ k = n ) -> ( y ^ ( k - 1 ) ) = ( y ^ ( n - 1 ) ) ) |
| 136 |
133 135
|
oveq12d |
|- ( ( ( ( ph /\ y e. CC ) /\ n e. NN ) /\ k = n ) -> ( ( k x. ( F ` k ) ) x. ( y ^ ( k - 1 ) ) ) = ( ( n x. ( F ` n ) ) x. ( y ^ ( n - 1 ) ) ) ) |
| 137 |
|
simpr |
|- ( ( ( ph /\ y e. CC ) /\ n e. NN ) -> n e. NN ) |
| 138 |
|
ovexd |
|- ( ( ( ph /\ y e. CC ) /\ n e. NN ) -> ( ( n x. ( F ` n ) ) x. ( y ^ ( n - 1 ) ) ) e. _V ) |
| 139 |
130 136 137 138
|
fvmptd |
|- ( ( ( ph /\ y e. CC ) /\ n e. NN ) -> ( ( E ` y ) ` n ) = ( ( n x. ( F ` n ) ) x. ( y ^ ( n - 1 ) ) ) ) |
| 140 |
139
|
sumeq2dv |
|- ( ( ph /\ y e. CC ) -> sum_ n e. NN ( ( E ` y ) ` n ) = sum_ n e. NN ( ( n x. ( F ` n ) ) x. ( y ^ ( n - 1 ) ) ) ) |
| 141 |
119 140
|
sylan2 |
|- ( ( ph /\ y e. D ) -> sum_ n e. NN ( ( E ` y ) ` n ) = sum_ n e. NN ( ( n x. ( F ` n ) ) x. ( y ^ ( n - 1 ) ) ) ) |
| 142 |
141
|
mpteq2dva |
|- ( ph -> ( y e. D |-> sum_ n e. NN ( ( E ` y ) ` n ) ) = ( y e. D |-> sum_ n e. NN ( ( n x. ( F ` n ) ) x. ( y ^ ( n - 1 ) ) ) ) ) |
| 143 |
113 142
|
eqtr4d |
|- ( ph -> ( CC _D P ) = ( y e. D |-> sum_ n e. NN ( ( E ` y ) ` n ) ) ) |
| 144 |
|
nfcv |
|- F/_ b NN |
| 145 |
|
nfmpt1 |
|- F/_ b ( b e. CC |-> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
| 146 |
8 145
|
nfcxfr |
|- F/_ b E |
| 147 |
146 33
|
nffv |
|- F/_ b ( E ` y ) |
| 148 |
|
nfcv |
|- F/_ b n |
| 149 |
147 148
|
nffv |
|- F/_ b ( ( E ` y ) ` n ) |
| 150 |
144 149
|
nfsum |
|- F/_ b sum_ n e. NN ( ( E ` y ) ` n ) |
| 151 |
|
nfcv |
|- F/_ y sum_ k e. NN ( ( E ` b ) ` k ) |
| 152 |
|
simpl |
|- ( ( y = b /\ n e. NN ) -> y = b ) |
| 153 |
152
|
fveq2d |
|- ( ( y = b /\ n e. NN ) -> ( E ` y ) = ( E ` b ) ) |
| 154 |
153
|
fveq1d |
|- ( ( y = b /\ n e. NN ) -> ( ( E ` y ) ` n ) = ( ( E ` b ) ` n ) ) |
| 155 |
154
|
sumeq2dv |
|- ( y = b -> sum_ n e. NN ( ( E ` y ) ` n ) = sum_ n e. NN ( ( E ` b ) ` n ) ) |
| 156 |
|
fveq2 |
|- ( n = k -> ( ( E ` b ) ` n ) = ( ( E ` b ) ` k ) ) |
| 157 |
|
nfmpt1 |
|- F/_ k ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) |
| 158 |
44 157
|
nfmpt |
|- F/_ k ( b e. CC |-> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
| 159 |
8 158
|
nfcxfr |
|- F/_ k E |
| 160 |
|
nfcv |
|- F/_ k b |
| 161 |
159 160
|
nffv |
|- F/_ k ( E ` b ) |
| 162 |
|
nfcv |
|- F/_ k n |
| 163 |
161 162
|
nffv |
|- F/_ k ( ( E ` b ) ` n ) |
| 164 |
|
nfcv |
|- F/_ n ( ( E ` b ) ` k ) |
| 165 |
156 163 164
|
cbvsum |
|- sum_ n e. NN ( ( E ` b ) ` n ) = sum_ k e. NN ( ( E ` b ) ` k ) |
| 166 |
155 165
|
eqtrdi |
|- ( y = b -> sum_ n e. NN ( ( E ` y ) ` n ) = sum_ k e. NN ( ( E ` b ) ` k ) ) |
| 167 |
30 29 150 151 166
|
cbvmptf |
|- ( y e. D |-> sum_ n e. NN ( ( E ` y ) ` n ) ) = ( b e. D |-> sum_ k e. NN ( ( E ` b ) ` k ) ) |
| 168 |
143 167
|
eqtrdi |
|- ( ph -> ( CC _D P ) = ( b e. D |-> sum_ k e. NN ( ( E ` b ) ` k ) ) ) |