Step |
Hyp |
Ref |
Expression |
1 |
|
binomcxp.a |
|
2 |
|
binomcxp.b |
|
3 |
|
binomcxp.lt |
|
4 |
|
binomcxp.c |
|
5 |
|
binomcxplem.f |
|
6 |
|
binomcxplem.s |
|
7 |
|
binomcxplem.r |
|
8 |
|
binomcxplem.e |
|
9 |
|
binomcxplem.d |
|
10 |
|
binomcxplem.p |
|
11 |
|
nfcv |
|
12 |
|
nfcv |
|
13 |
|
nfcv |
|
14 |
|
nfcv |
|
15 |
|
nfmpt1 |
|
16 |
6 15
|
nfcxfr |
|
17 |
|
nfcv |
|
18 |
16 17
|
nffv |
|
19 |
12 14 18
|
nfseq |
|
20 |
19
|
nfel1 |
|
21 |
|
nfcv |
|
22 |
20 21
|
nfrabw |
|
23 |
|
nfcv |
|
24 |
|
nfcv |
|
25 |
22 23 24
|
nfsup |
|
26 |
7 25
|
nfcxfr |
|
27 |
12 13 26
|
nfov |
|
28 |
11 27
|
nfima |
|
29 |
9 28
|
nfcxfr |
|
30 |
|
nfcv |
|
31 |
|
nfcv |
|
32 |
|
nfcv |
|
33 |
|
nfcv |
|
34 |
16 33
|
nffv |
|
35 |
|
nfcv |
|
36 |
34 35
|
nffv |
|
37 |
32 36
|
nfsum |
|
38 |
|
simpl |
|
39 |
38
|
fveq2d |
|
40 |
39
|
fveq1d |
|
41 |
40
|
sumeq2dv |
|
42 |
|
nfcv |
|
43 |
|
nfcv |
|
44 |
|
nfmpt1 |
|
45 |
43 44
|
nfmpt |
|
46 |
6 45
|
nfcxfr |
|
47 |
|
nfcv |
|
48 |
46 47
|
nffv |
|
49 |
|
nfcv |
|
50 |
48 49
|
nffv |
|
51 |
|
fveq2 |
|
52 |
42 50 51
|
cbvsumi |
|
53 |
41 52
|
eqtrdi |
|
54 |
29 30 31 37 53
|
cbvmptf |
|
55 |
10 54
|
eqtri |
|
56 |
|
ovexd |
|
57 |
5
|
a1i |
|
58 |
5
|
a1i |
|
59 |
|
simpr |
|
60 |
59
|
oveq2d |
|
61 |
|
simpr |
|
62 |
4
|
adantr |
|
63 |
62 61
|
bcccl |
|
64 |
58 60 61 63
|
fvmptd |
|
65 |
64 63
|
eqeltrd |
|
66 |
56 57 65
|
fmpt2d |
|
67 |
|
nfcv |
|
68 |
|
nfcv |
|
69 |
|
nfv |
|
70 |
|
nfcv |
|
71 |
|
nfcv |
|
72 |
|
nfcv |
|
73 |
6 72
|
nfcxfr |
|
74 |
|
nfcv |
|
75 |
73 74
|
nffv |
|
76 |
70 71 75
|
nfseq |
|
77 |
76
|
nfel1 |
|
78 |
|
fveq2 |
|
79 |
78
|
seqeq3d |
|
80 |
79
|
eleq1d |
|
81 |
67 68 69 77 80
|
cbvrabw |
|
82 |
81
|
supeq1i |
|
83 |
7 82
|
eqtri |
|
84 |
6
|
fveq1i |
|
85 |
|
seqeq3 |
|
86 |
84 85
|
ax-mp |
|
87 |
86
|
eleq1i |
|
88 |
87
|
rabbii |
|
89 |
88
|
supeq1i |
|
90 |
7 82 89
|
3eqtrri |
|
91 |
90
|
eleq1i |
|
92 |
90
|
oveq2i |
|
93 |
92
|
oveq1i |
|
94 |
|
eqid |
|
95 |
91 93 94
|
ifbieq12i |
|
96 |
|
oveq1 |
|
97 |
96
|
oveq2d |
|
98 |
97
|
mpteq2dv |
|
99 |
98
|
cbvmptv |
|
100 |
99
|
fveq1i |
|
101 |
|
seqeq3 |
|
102 |
100 101
|
ax-mp |
|
103 |
102
|
eleq1i |
|
104 |
103
|
rabbii |
|
105 |
104
|
supeq1i |
|
106 |
105
|
eleq1i |
|
107 |
105
|
oveq2i |
|
108 |
107
|
oveq1i |
|
109 |
106 108 94
|
ifbieq12i |
|
110 |
109
|
oveq2i |
|
111 |
110
|
oveq1i |
|
112 |
111
|
oveq2i |
|
113 |
6 55 66 83 9 95 112
|
pserdv2 |
|
114 |
|
cnvimass |
|
115 |
9 114
|
eqsstri |
|
116 |
|
absf |
|
117 |
116
|
fdmi |
|
118 |
115 117
|
sseqtri |
|
119 |
118
|
sseli |
|
120 |
8
|
a1i |
|
121 |
|
simplr |
|
122 |
121
|
oveq1d |
|
123 |
122
|
oveq2d |
|
124 |
123
|
mpteq2dva |
|
125 |
|
simpr |
|
126 |
|
nnex |
|
127 |
126
|
mptex |
|
128 |
127
|
a1i |
|
129 |
120 124 125 128
|
fvmptd |
|
130 |
129
|
adantr |
|
131 |
|
simpr |
|
132 |
131
|
fveq2d |
|
133 |
131 132
|
oveq12d |
|
134 |
131
|
oveq1d |
|
135 |
134
|
oveq2d |
|
136 |
133 135
|
oveq12d |
|
137 |
|
simpr |
|
138 |
|
ovexd |
|
139 |
130 136 137 138
|
fvmptd |
|
140 |
139
|
sumeq2dv |
|
141 |
119 140
|
sylan2 |
|
142 |
141
|
mpteq2dva |
|
143 |
113 142
|
eqtr4d |
|
144 |
|
nfcv |
|
145 |
|
nfmpt1 |
|
146 |
8 145
|
nfcxfr |
|
147 |
146 33
|
nffv |
|
148 |
|
nfcv |
|
149 |
147 148
|
nffv |
|
150 |
144 149
|
nfsum |
|
151 |
|
nfcv |
|
152 |
|
simpl |
|
153 |
152
|
fveq2d |
|
154 |
153
|
fveq1d |
|
155 |
154
|
sumeq2dv |
|
156 |
|
nfmpt1 |
|
157 |
43 156
|
nfmpt |
|
158 |
8 157
|
nfcxfr |
|
159 |
|
nfcv |
|
160 |
158 159
|
nffv |
|
161 |
|
nfcv |
|
162 |
160 161
|
nffv |
|
163 |
|
nfcv |
|
164 |
|
fveq2 |
|
165 |
162 163 164
|
cbvsumi |
|
166 |
155 165
|
eqtrdi |
|
167 |
30 29 150 151 166
|
cbvmptf |
|
168 |
143 167
|
eqtrdi |
|