| Step |
Hyp |
Ref |
Expression |
| 1 |
|
binomcxp.a |
|
| 2 |
|
binomcxp.b |
|
| 3 |
|
binomcxp.lt |
|
| 4 |
|
binomcxp.c |
|
| 5 |
|
binomcxplem.f |
|
| 6 |
|
binomcxplem.s |
|
| 7 |
|
binomcxplem.r |
|
| 8 |
|
binomcxplem.e |
|
| 9 |
|
binomcxplem.d |
|
| 10 |
|
binomcxplem.p |
|
| 11 |
|
nfcv |
|
| 12 |
|
nfcv |
|
| 13 |
|
nfcv |
|
| 14 |
|
nfcv |
|
| 15 |
|
nfmpt1 |
|
| 16 |
6 15
|
nfcxfr |
|
| 17 |
|
nfcv |
|
| 18 |
16 17
|
nffv |
|
| 19 |
12 14 18
|
nfseq |
|
| 20 |
19
|
nfel1 |
|
| 21 |
|
nfcv |
|
| 22 |
20 21
|
nfrabw |
|
| 23 |
|
nfcv |
|
| 24 |
|
nfcv |
|
| 25 |
22 23 24
|
nfsup |
|
| 26 |
7 25
|
nfcxfr |
|
| 27 |
12 13 26
|
nfov |
|
| 28 |
11 27
|
nfima |
|
| 29 |
9 28
|
nfcxfr |
|
| 30 |
|
nfcv |
|
| 31 |
|
nfcv |
|
| 32 |
|
nfcv |
|
| 33 |
|
nfcv |
|
| 34 |
16 33
|
nffv |
|
| 35 |
|
nfcv |
|
| 36 |
34 35
|
nffv |
|
| 37 |
32 36
|
nfsum |
|
| 38 |
|
simpl |
|
| 39 |
38
|
fveq2d |
|
| 40 |
39
|
fveq1d |
|
| 41 |
40
|
sumeq2dv |
|
| 42 |
|
fveq2 |
|
| 43 |
|
nfcv |
|
| 44 |
|
nfcv |
|
| 45 |
|
nfmpt1 |
|
| 46 |
44 45
|
nfmpt |
|
| 47 |
6 46
|
nfcxfr |
|
| 48 |
|
nfcv |
|
| 49 |
47 48
|
nffv |
|
| 50 |
|
nfcv |
|
| 51 |
49 50
|
nffv |
|
| 52 |
42 43 51
|
cbvsum |
|
| 53 |
41 52
|
eqtrdi |
|
| 54 |
29 30 31 37 53
|
cbvmptf |
|
| 55 |
10 54
|
eqtri |
|
| 56 |
|
ovexd |
|
| 57 |
5
|
a1i |
|
| 58 |
5
|
a1i |
|
| 59 |
|
simpr |
|
| 60 |
59
|
oveq2d |
|
| 61 |
|
simpr |
|
| 62 |
4
|
adantr |
|
| 63 |
62 61
|
bcccl |
|
| 64 |
58 60 61 63
|
fvmptd |
|
| 65 |
64 63
|
eqeltrd |
|
| 66 |
56 57 65
|
fmpt2d |
|
| 67 |
|
nfcv |
|
| 68 |
|
nfcv |
|
| 69 |
|
nfv |
|
| 70 |
|
nfcv |
|
| 71 |
|
nfcv |
|
| 72 |
|
nfcv |
|
| 73 |
6 72
|
nfcxfr |
|
| 74 |
|
nfcv |
|
| 75 |
73 74
|
nffv |
|
| 76 |
70 71 75
|
nfseq |
|
| 77 |
76
|
nfel1 |
|
| 78 |
|
fveq2 |
|
| 79 |
78
|
seqeq3d |
|
| 80 |
79
|
eleq1d |
|
| 81 |
67 68 69 77 80
|
cbvrabw |
|
| 82 |
81
|
supeq1i |
|
| 83 |
7 82
|
eqtri |
|
| 84 |
6
|
fveq1i |
|
| 85 |
|
seqeq3 |
|
| 86 |
84 85
|
ax-mp |
|
| 87 |
86
|
eleq1i |
|
| 88 |
87
|
rabbii |
|
| 89 |
88
|
supeq1i |
|
| 90 |
7 82 89
|
3eqtrri |
|
| 91 |
90
|
eleq1i |
|
| 92 |
90
|
oveq2i |
|
| 93 |
92
|
oveq1i |
|
| 94 |
|
eqid |
|
| 95 |
91 93 94
|
ifbieq12i |
|
| 96 |
|
oveq1 |
|
| 97 |
96
|
oveq2d |
|
| 98 |
97
|
mpteq2dv |
|
| 99 |
98
|
cbvmptv |
|
| 100 |
99
|
fveq1i |
|
| 101 |
|
seqeq3 |
|
| 102 |
100 101
|
ax-mp |
|
| 103 |
102
|
eleq1i |
|
| 104 |
103
|
rabbii |
|
| 105 |
104
|
supeq1i |
|
| 106 |
105
|
eleq1i |
|
| 107 |
105
|
oveq2i |
|
| 108 |
107
|
oveq1i |
|
| 109 |
106 108 94
|
ifbieq12i |
|
| 110 |
109
|
oveq2i |
|
| 111 |
110
|
oveq1i |
|
| 112 |
111
|
oveq2i |
|
| 113 |
6 55 66 83 9 95 112
|
pserdv2 |
|
| 114 |
|
cnvimass |
|
| 115 |
9 114
|
eqsstri |
|
| 116 |
|
absf |
|
| 117 |
116
|
fdmi |
|
| 118 |
115 117
|
sseqtri |
|
| 119 |
118
|
sseli |
|
| 120 |
8
|
a1i |
|
| 121 |
|
simplr |
|
| 122 |
121
|
oveq1d |
|
| 123 |
122
|
oveq2d |
|
| 124 |
123
|
mpteq2dva |
|
| 125 |
|
simpr |
|
| 126 |
|
nnex |
|
| 127 |
126
|
mptex |
|
| 128 |
127
|
a1i |
|
| 129 |
120 124 125 128
|
fvmptd |
|
| 130 |
129
|
adantr |
|
| 131 |
|
simpr |
|
| 132 |
131
|
fveq2d |
|
| 133 |
131 132
|
oveq12d |
|
| 134 |
131
|
oveq1d |
|
| 135 |
134
|
oveq2d |
|
| 136 |
133 135
|
oveq12d |
|
| 137 |
|
simpr |
|
| 138 |
|
ovexd |
|
| 139 |
130 136 137 138
|
fvmptd |
|
| 140 |
139
|
sumeq2dv |
|
| 141 |
119 140
|
sylan2 |
|
| 142 |
141
|
mpteq2dva |
|
| 143 |
113 142
|
eqtr4d |
|
| 144 |
|
nfcv |
|
| 145 |
|
nfmpt1 |
|
| 146 |
8 145
|
nfcxfr |
|
| 147 |
146 33
|
nffv |
|
| 148 |
|
nfcv |
|
| 149 |
147 148
|
nffv |
|
| 150 |
144 149
|
nfsum |
|
| 151 |
|
nfcv |
|
| 152 |
|
simpl |
|
| 153 |
152
|
fveq2d |
|
| 154 |
153
|
fveq1d |
|
| 155 |
154
|
sumeq2dv |
|
| 156 |
|
fveq2 |
|
| 157 |
|
nfmpt1 |
|
| 158 |
44 157
|
nfmpt |
|
| 159 |
8 158
|
nfcxfr |
|
| 160 |
|
nfcv |
|
| 161 |
159 160
|
nffv |
|
| 162 |
|
nfcv |
|
| 163 |
161 162
|
nffv |
|
| 164 |
|
nfcv |
|
| 165 |
156 163 164
|
cbvsum |
|
| 166 |
155 165
|
eqtrdi |
|
| 167 |
30 29 150 151 166
|
cbvmptf |
|
| 168 |
143 167
|
eqtrdi |
|