Metamath Proof Explorer


Theorem binomcxplemnn0

Description: Lemma for binomcxp . When C is a nonnegative integer, the binomial's finite sum value by the standard binomial theorem binom equals this generalized infinite sum: the generalized binomial coefficient and exponentiation operators give exactly the same values in the standard index set ( 0 ... C ) , and when the index set is widened beyond C the additional values are just zeroes. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses binomcxp.a φ A +
binomcxp.b φ B
binomcxp.lt φ B < A
binomcxp.c φ C
Assertion binomcxplemnn0 φ C 0 A + B C = k 0 C C 𝑐 k A C k B k

Proof

Step Hyp Ref Expression
1 binomcxp.a φ A +
2 binomcxp.b φ B
3 binomcxp.lt φ B < A
4 binomcxp.c φ C
5 1 rpcnd φ A
6 2 recnd φ B
7 binom A B C 0 A + B C = k = 0 C ( C k) A C k B k
8 7 3expia A B C 0 A + B C = k = 0 C ( C k) A C k B k
9 5 6 8 syl2anc φ C 0 A + B C = k = 0 C ( C k) A C k B k
10 9 imp φ C 0 A + B C = k = 0 C ( C k) A C k B k
11 5 adantr φ C 0 A
12 6 adantr φ C 0 B
13 11 12 addcld φ C 0 A + B
14 simpr φ C 0 C 0
15 cxpexp A + B C 0 A + B C = A + B C
16 13 14 15 syl2anc φ C 0 A + B C = A + B C
17 elfznn0 k 0 C k 0
18 simplr φ C 0 k 0 C 0
19 simpr φ C 0 k 0 k 0
20 18 19 bccbc φ C 0 k 0 C C 𝑐 k = ( C k)
21 17 20 sylan2 φ C 0 k 0 C C C 𝑐 k = ( C k)
22 5 ad2antrr φ C 0 k 0 C A
23 elfzle2 k 0 C k C
24 23 adantl φ C 0 k 0 C k C
25 nn0sub k 0 C 0 k C C k 0
26 25 ancoms C 0 k 0 k C C k 0
27 26 adantll φ C 0 k 0 k C C k 0
28 17 27 sylan2 φ C 0 k 0 C k C C k 0
29 24 28 mpbid φ C 0 k 0 C C k 0
30 cxpexp A C k 0 A C k = A C k
31 22 29 30 syl2anc φ C 0 k 0 C A C k = A C k
32 31 oveq1d φ C 0 k 0 C A C k B k = A C k B k
33 21 32 oveq12d φ C 0 k 0 C C C 𝑐 k A C k B k = ( C k) A C k B k
34 33 sumeq2dv φ C 0 k = 0 C C C 𝑐 k A C k B k = k = 0 C ( C k) A C k B k
35 10 16 34 3eqtr4d φ C 0 A + B C = k = 0 C C C 𝑐 k A C k B k
36 4 adantr φ C 0 C
37 13 36 cxpcld φ C 0 A + B C
38 35 37 eqeltrrd φ C 0 k = 0 C C C 𝑐 k A C k B k
39 38 addid1d φ C 0 k = 0 C C C 𝑐 k A C k B k + 0 = k = 0 C C C 𝑐 k A C k B k
40 nn0uz 0 = 0
41 eqid C + 1 = C + 1
42 1nn0 1 0
43 42 a1i φ C 0 1 0
44 14 43 nn0addcld φ C 0 C + 1 0
45 eqidd φ C 0 k 0 j 0 C C 𝑐 j A C j B j = j 0 C C 𝑐 j A C j B j
46 simpr φ C 0 k 0 j = k j = k
47 46 oveq2d φ C 0 k 0 j = k C C 𝑐 j = C C 𝑐 k
48 46 oveq2d φ C 0 k 0 j = k C j = C k
49 48 oveq2d φ C 0 k 0 j = k A C j = A C k
50 46 oveq2d φ C 0 k 0 j = k B j = B k
51 49 50 oveq12d φ C 0 k 0 j = k A C j B j = A C k B k
52 47 51 oveq12d φ C 0 k 0 j = k C C 𝑐 j A C j B j = C C 𝑐 k A C k B k
53 4 ad2antrr φ C 0 k 0 C
54 53 19 bcccl φ C 0 k 0 C C 𝑐 k
55 5 ad2antrr φ C 0 k 0 A
56 19 nn0cnd φ C 0 k 0 k
57 53 56 subcld φ C 0 k 0 C k
58 55 57 cxpcld φ C 0 k 0 A C k
59 6 ad2antrr φ C 0 k 0 B
60 59 19 expcld φ C 0 k 0 B k
61 58 60 mulcld φ C 0 k 0 A C k B k
62 54 61 mulcld φ C 0 k 0 C C 𝑐 k A C k B k
63 45 52 19 62 fvmptd φ C 0 k 0 j 0 C C 𝑐 j A C j B j k = C C 𝑐 k A C k B k
64 peano2nn0 C 0 C + 1 0
65 64 adantl φ C 0 C + 1 0
66 c0ex 0 V
67 66 fconst 0 × 0 : 0 0
68 67 a1i φ C 0 0 × 0 : 0 0
69 0red φ C 0 0
70 69 snssd φ C 0 0
71 68 70 fssd φ C 0 0 × 0 : 0
72 71 ffvelrnda φ C 0 k 0 0 × 0 k
73 63 62 eqeltrd φ C 0 k 0 j 0 C C 𝑐 j A C j B j k
74 climrel Rel
75 40 xpeq1i 0 × 0 = 0 × 0
76 seqeq3 0 × 0 = 0 × 0 seq 0 + 0 × 0 = seq 0 + 0 × 0
77 75 76 ax-mp seq 0 + 0 × 0 = seq 0 + 0 × 0
78 0z 0
79 serclim0 0 seq 0 + 0 × 0 0
80 78 79 ax-mp seq 0 + 0 × 0 0
81 77 80 eqbrtri seq 0 + 0 × 0 0
82 releldm Rel seq 0 + 0 × 0 0 seq 0 + 0 × 0 dom
83 74 81 82 mp2an seq 0 + 0 × 0 dom
84 83 a1i φ C 0 seq 0 + 0 × 0 dom
85 eluznn0 C + 1 0 k C + 1 k 0
86 65 85 sylan φ C 0 k C + 1 k 0
87 86 63 syldan φ C 0 k C + 1 j 0 C C 𝑐 j A C j B j k = C C 𝑐 k A C k B k
88 0zd φ C 0 k C + 1 0
89 86 nn0zd φ C 0 k C + 1 k
90 1zzd φ C 0 k C + 1 1
91 89 90 zsubcld φ C 0 k C + 1 k 1
92 14 nn0zd φ C 0 C
93 92 adantr φ C 0 k C + 1 C
94 14 nn0ge0d φ C 0 0 C
95 94 adantr φ C 0 k C + 1 0 C
96 eluzle k C + 1 C + 1 k
97 96 adantl φ C 0 k C + 1 C + 1 k
98 93 zred φ C 0 k C + 1 C
99 1red φ C 0 k C + 1 1
100 86 nn0red φ C 0 k C + 1 k
101 leaddsub C 1 k C + 1 k C k 1
102 98 99 100 101 syl3anc φ C 0 k C + 1 C + 1 k C k 1
103 97 102 mpbid φ C 0 k C + 1 C k 1
104 88 91 93 95 103 elfzd φ C 0 k C + 1 C 0 k 1
105 4 ad2antrr φ C 0 k C + 1 C
106 105 86 bcc0 φ C 0 k C + 1 C C 𝑐 k = 0 C 0 k 1
107 104 106 mpbird φ C 0 k C + 1 C C 𝑐 k = 0
108 107 oveq1d φ C 0 k C + 1 C C 𝑐 k A C k B k = 0 A C k B k
109 5 ad2antrr φ C 0 k C + 1 A
110 eluzelcn k C + 1 k
111 110 adantl φ C 0 k C + 1 k
112 105 111 subcld φ C 0 k C + 1 C k
113 109 112 cxpcld φ C 0 k C + 1 A C k
114 6 ad2antrr φ C 0 k C + 1 B
115 114 86 expcld φ C 0 k C + 1 B k
116 113 115 mulcld φ C 0 k C + 1 A C k B k
117 116 mul02d φ C 0 k C + 1 0 A C k B k = 0
118 108 117 eqtrd φ C 0 k C + 1 C C 𝑐 k A C k B k = 0
119 87 118 eqtrd φ C 0 k C + 1 j 0 C C 𝑐 j A C j B j k = 0
120 119 abs00bd φ C 0 k C + 1 j 0 C C 𝑐 j A C j B j k = 0
121 0re 0
122 120 121 eqeltrdi φ C 0 k C + 1 j 0 C C 𝑐 j A C j B j k
123 eqle j 0 C C 𝑐 j A C j B j k j 0 C C 𝑐 j A C j B j k = 0 j 0 C C 𝑐 j A C j B j k 0
124 122 120 123 syl2anc φ C 0 k C + 1 j 0 C C 𝑐 j A C j B j k 0
125 72 recnd φ C 0 k 0 0 × 0 k
126 86 125 syldan φ C 0 k C + 1 0 × 0 k
127 126 mul02d φ C 0 k C + 1 0 0 × 0 k = 0
128 124 127 breqtrrd φ C 0 k C + 1 j 0 C C 𝑐 j A C j B j k 0 0 × 0 k
129 40 65 72 73 84 69 128 cvgcmpce φ C 0 seq 0 + j 0 C C 𝑐 j A C j B j dom
130 40 41 44 63 62 129 isumsplit φ C 0 k 0 C C 𝑐 k A C k B k = k = 0 C + 1 - 1 C C 𝑐 k A C k B k + k C + 1 C C 𝑐 k A C k B k
131 1cnd φ C 0 1
132 36 131 pncand φ C 0 C + 1 - 1 = C
133 132 oveq2d φ C 0 0 C + 1 - 1 = 0 C
134 133 sumeq1d φ C 0 k = 0 C + 1 - 1 C C 𝑐 k A C k B k = k = 0 C C C 𝑐 k A C k B k
135 134 oveq1d φ C 0 k = 0 C + 1 - 1 C C 𝑐 k A C k B k + k C + 1 C C 𝑐 k A C k B k = k = 0 C C C 𝑐 k A C k B k + k C + 1 C C 𝑐 k A C k B k
136 118 sumeq2dv φ C 0 k C + 1 C C 𝑐 k A C k B k = k C + 1 0
137 ssid C + 1 C + 1
138 137 orci C + 1 C + 1 C + 1 Fin
139 sumz C + 1 C + 1 C + 1 Fin k C + 1 0 = 0
140 138 139 ax-mp k C + 1 0 = 0
141 136 140 eqtrdi φ C 0 k C + 1 C C 𝑐 k A C k B k = 0
142 141 oveq2d φ C 0 k = 0 C C C 𝑐 k A C k B k + k C + 1 C C 𝑐 k A C k B k = k = 0 C C C 𝑐 k A C k B k + 0
143 130 135 142 3eqtrd φ C 0 k 0 C C 𝑐 k A C k B k = k = 0 C C C 𝑐 k A C k B k + 0
144 39 143 35 3eqtr4rd φ C 0 A + B C = k 0 C C 𝑐 k A C k B k