Step |
Hyp |
Ref |
Expression |
1 |
|
binomcxp.a |
|
2 |
|
binomcxp.b |
|
3 |
|
binomcxp.lt |
|
4 |
|
binomcxp.c |
|
5 |
1
|
rpcnd |
|
6 |
2
|
recnd |
|
7 |
|
binom |
|
8 |
7
|
3expia |
|
9 |
5 6 8
|
syl2anc |
|
10 |
9
|
imp |
|
11 |
5
|
adantr |
|
12 |
6
|
adantr |
|
13 |
11 12
|
addcld |
|
14 |
|
simpr |
|
15 |
|
cxpexp |
|
16 |
13 14 15
|
syl2anc |
|
17 |
|
elfznn0 |
|
18 |
|
simplr |
|
19 |
|
simpr |
|
20 |
18 19
|
bccbc |
|
21 |
17 20
|
sylan2 |
|
22 |
5
|
ad2antrr |
|
23 |
|
elfzle2 |
|
24 |
23
|
adantl |
|
25 |
|
nn0sub |
|
26 |
25
|
ancoms |
|
27 |
26
|
adantll |
|
28 |
17 27
|
sylan2 |
|
29 |
24 28
|
mpbid |
|
30 |
|
cxpexp |
|
31 |
22 29 30
|
syl2anc |
|
32 |
31
|
oveq1d |
|
33 |
21 32
|
oveq12d |
|
34 |
33
|
sumeq2dv |
|
35 |
10 16 34
|
3eqtr4d |
|
36 |
4
|
adantr |
|
37 |
13 36
|
cxpcld |
|
38 |
35 37
|
eqeltrrd |
|
39 |
38
|
addid1d |
|
40 |
|
nn0uz |
|
41 |
|
eqid |
|
42 |
|
1nn0 |
|
43 |
42
|
a1i |
|
44 |
14 43
|
nn0addcld |
|
45 |
|
eqidd |
|
46 |
|
simpr |
|
47 |
46
|
oveq2d |
|
48 |
46
|
oveq2d |
|
49 |
48
|
oveq2d |
|
50 |
46
|
oveq2d |
|
51 |
49 50
|
oveq12d |
|
52 |
47 51
|
oveq12d |
|
53 |
4
|
ad2antrr |
|
54 |
53 19
|
bcccl |
|
55 |
5
|
ad2antrr |
|
56 |
19
|
nn0cnd |
|
57 |
53 56
|
subcld |
|
58 |
55 57
|
cxpcld |
|
59 |
6
|
ad2antrr |
|
60 |
59 19
|
expcld |
|
61 |
58 60
|
mulcld |
|
62 |
54 61
|
mulcld |
|
63 |
45 52 19 62
|
fvmptd |
|
64 |
|
peano2nn0 |
|
65 |
64
|
adantl |
|
66 |
|
c0ex |
|
67 |
66
|
fconst |
|
68 |
67
|
a1i |
|
69 |
|
0red |
|
70 |
69
|
snssd |
|
71 |
68 70
|
fssd |
|
72 |
71
|
ffvelrnda |
|
73 |
63 62
|
eqeltrd |
|
74 |
|
climrel |
|
75 |
40
|
xpeq1i |
|
76 |
|
seqeq3 |
|
77 |
75 76
|
ax-mp |
|
78 |
|
0z |
|
79 |
|
serclim0 |
|
80 |
78 79
|
ax-mp |
|
81 |
77 80
|
eqbrtri |
|
82 |
|
releldm |
|
83 |
74 81 82
|
mp2an |
|
84 |
83
|
a1i |
|
85 |
|
eluznn0 |
|
86 |
65 85
|
sylan |
|
87 |
86 63
|
syldan |
|
88 |
|
0zd |
|
89 |
86
|
nn0zd |
|
90 |
|
1zzd |
|
91 |
89 90
|
zsubcld |
|
92 |
14
|
nn0zd |
|
93 |
92
|
adantr |
|
94 |
14
|
nn0ge0d |
|
95 |
94
|
adantr |
|
96 |
|
eluzle |
|
97 |
96
|
adantl |
|
98 |
93
|
zred |
|
99 |
|
1red |
|
100 |
86
|
nn0red |
|
101 |
|
leaddsub |
|
102 |
98 99 100 101
|
syl3anc |
|
103 |
97 102
|
mpbid |
|
104 |
88 91 93 95 103
|
elfzd |
|
105 |
4
|
ad2antrr |
|
106 |
105 86
|
bcc0 |
|
107 |
104 106
|
mpbird |
|
108 |
107
|
oveq1d |
|
109 |
5
|
ad2antrr |
|
110 |
|
eluzelcn |
|
111 |
110
|
adantl |
|
112 |
105 111
|
subcld |
|
113 |
109 112
|
cxpcld |
|
114 |
6
|
ad2antrr |
|
115 |
114 86
|
expcld |
|
116 |
113 115
|
mulcld |
|
117 |
116
|
mul02d |
|
118 |
108 117
|
eqtrd |
|
119 |
87 118
|
eqtrd |
|
120 |
119
|
abs00bd |
|
121 |
|
0re |
|
122 |
120 121
|
eqeltrdi |
|
123 |
|
eqle |
|
124 |
122 120 123
|
syl2anc |
|
125 |
72
|
recnd |
|
126 |
86 125
|
syldan |
|
127 |
126
|
mul02d |
|
128 |
124 127
|
breqtrrd |
|
129 |
40 65 72 73 84 69 128
|
cvgcmpce |
|
130 |
40 41 44 63 62 129
|
isumsplit |
|
131 |
|
1cnd |
|
132 |
36 131
|
pncand |
|
133 |
132
|
oveq2d |
|
134 |
133
|
sumeq1d |
|
135 |
134
|
oveq1d |
|
136 |
118
|
sumeq2dv |
|
137 |
|
ssid |
|
138 |
137
|
orci |
|
139 |
|
sumz |
|
140 |
138 139
|
ax-mp |
|
141 |
136 140
|
eqtrdi |
|
142 |
141
|
oveq2d |
|
143 |
130 135 142
|
3eqtrd |
|
144 |
39 143 35
|
3eqtr4rd |
|