Metamath Proof Explorer


Theorem binomcxplemrat

Description: Lemma for binomcxp . As k increases, this ratio's absolute value converges to one. Part of equation "Since continuity of the absolute value..." in the Wikibooks proof (proven for the inverse ratio, which we later show is no problem). (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses binomcxp.a φ A +
binomcxp.b φ B
binomcxp.lt φ B < A
binomcxp.c φ C
Assertion binomcxplemrat φ k 0 C k k + 1 1

Proof

Step Hyp Ref Expression
1 binomcxp.a φ A +
2 binomcxp.b φ B
3 binomcxp.lt φ B < A
4 binomcxp.c φ C
5 nn0uz 0 = 0
6 0zd φ 0
7 peano2cn C C + 1
8 4 7 syl φ C + 1
9 1zzd φ 1
10 nn0ex 0 V
11 10 mptex k 0 C + 1 k + 1 V
12 11 a1i φ k 0 C + 1 k + 1 V
13 eqidd φ x 0 k 0 C + 1 k + 1 = k 0 C + 1 k + 1
14 simpr φ x 0 k = x k = x
15 14 oveq1d φ x 0 k = x k + 1 = x + 1
16 15 oveq2d φ x 0 k = x C + 1 k + 1 = C + 1 x + 1
17 simpr φ x 0 x 0
18 ovexd φ x 0 C + 1 x + 1 V
19 13 16 17 18 fvmptd φ x 0 k 0 C + 1 k + 1 x = C + 1 x + 1
20 5 6 8 9 12 19 divcnvshft φ k 0 C + 1 k + 1 0
21 ovexd φ k 0 C + 1 k + 1 f k 0 k + 1 k + 1 V
22 nn0cn k 0 k
23 1cnd k 0 1
24 22 23 addcld k 0 k + 1
25 nn0p1nn k 0 k + 1
26 25 nnne0d k 0 k + 1 0
27 24 26 dividd k 0 k + 1 k + 1 = 1
28 27 mpteq2ia k 0 k + 1 k + 1 = k 0 1
29 fconstmpt 0 × 1 = k 0 1
30 28 29 eqtr4i k 0 k + 1 k + 1 = 0 × 1
31 ax-1cn 1
32 0z 0
33 5 eqimss2i 0 0
34 33 10 climconst2 1 0 0 × 1 1
35 31 32 34 mp2an 0 × 1 1
36 30 35 eqbrtri k 0 k + 1 k + 1 1
37 36 a1i φ k 0 k + 1 k + 1 1
38 4 adantr φ x 0 C
39 1cnd φ x 0 1
40 38 39 addcld φ x 0 C + 1
41 17 nn0cnd φ x 0 x
42 41 39 addcld φ x 0 x + 1
43 nn0p1nn x 0 x + 1
44 43 nnne0d x 0 x + 1 0
45 44 adantl φ x 0 x + 1 0
46 40 42 45 divcld φ x 0 C + 1 x + 1
47 19 46 eqeltrd φ x 0 k 0 C + 1 k + 1 x
48 eqidd φ x 0 k 0 k + 1 k + 1 = k 0 k + 1 k + 1
49 15 15 oveq12d φ x 0 k = x k + 1 k + 1 = x + 1 x + 1
50 ovexd φ x 0 x + 1 x + 1 V
51 48 49 17 50 fvmptd φ x 0 k 0 k + 1 k + 1 x = x + 1 x + 1
52 42 42 45 divcld φ x 0 x + 1 x + 1
53 51 52 eqeltrd φ x 0 k 0 k + 1 k + 1 x
54 ovex C + 1 k + 1 V
55 eqid k 0 C + 1 k + 1 = k 0 C + 1 k + 1
56 54 55 fnmpti k 0 C + 1 k + 1 Fn 0
57 56 a1i φ k 0 C + 1 k + 1 Fn 0
58 ovex k + 1 k + 1 V
59 eqid k 0 k + 1 k + 1 = k 0 k + 1 k + 1
60 58 59 fnmpti k 0 k + 1 k + 1 Fn 0
61 60 a1i φ k 0 k + 1 k + 1 Fn 0
62 10 a1i φ 0 V
63 inidm 0 0 = 0
64 eqidd φ x 0 k 0 C + 1 k + 1 x = k 0 C + 1 k + 1 x
65 eqidd φ x 0 k 0 k + 1 k + 1 x = k 0 k + 1 k + 1 x
66 57 61 62 62 63 64 65 ofval φ x 0 k 0 C + 1 k + 1 f k 0 k + 1 k + 1 x = k 0 C + 1 k + 1 x k 0 k + 1 k + 1 x
67 5 6 20 21 37 47 53 66 climsub φ k 0 C + 1 k + 1 f k 0 k + 1 k + 1 0 1
68 ovexd φ k 0 C + 1 k + 1 V
69 ovexd φ k 0 k + 1 k + 1 V
70 eqidd φ k 0 C + 1 k + 1 = k 0 C + 1 k + 1
71 eqidd φ k 0 k + 1 k + 1 = k 0 k + 1 k + 1
72 62 68 69 70 71 offval2 φ k 0 C + 1 k + 1 f k 0 k + 1 k + 1 = k 0 C + 1 k + 1 k + 1 k + 1
73 8 adantr φ k 0 C + 1
74 24 adantl φ k 0 k + 1
75 26 adantl φ k 0 k + 1 0
76 73 74 74 75 divsubdird φ k 0 C + 1 - k + 1 k + 1 = C + 1 k + 1 k + 1 k + 1
77 4 adantr φ k 0 C
78 22 adantl φ k 0 k
79 1cnd φ k 0 1
80 77 78 79 pnpcan2d φ k 0 C + 1 - k + 1 = C k
81 80 oveq1d φ k 0 C + 1 - k + 1 k + 1 = C k k + 1
82 76 81 eqtr3d φ k 0 C + 1 k + 1 k + 1 k + 1 = C k k + 1
83 82 mpteq2dva φ k 0 C + 1 k + 1 k + 1 k + 1 = k 0 C k k + 1
84 72 83 eqtrd φ k 0 C + 1 k + 1 f k 0 k + 1 k + 1 = k 0 C k k + 1
85 df-neg 1 = 0 1
86 85 eqcomi 0 1 = 1
87 86 a1i φ 0 1 = 1
88 67 84 87 3brtr3d φ k 0 C k k + 1 -1
89 10 mptex k 0 C k k + 1 V
90 89 a1i φ k 0 C k k + 1 V
91 eqidd φ x 0 k 0 C k k + 1 = k 0 C k k + 1
92 oveq2 k = x C k = C x
93 oveq1 k = x k + 1 = x + 1
94 92 93 oveq12d k = x C k k + 1 = C x x + 1
95 94 adantl φ x 0 k = x C k k + 1 = C x x + 1
96 ovexd φ x 0 C x x + 1 V
97 91 95 17 96 fvmptd φ x 0 k 0 C k k + 1 x = C x x + 1
98 38 41 subcld φ x 0 C x
99 98 42 45 divcld φ x 0 C x x + 1
100 97 99 eqeltrd φ x 0 k 0 C k k + 1 x
101 eqidd φ x 0 k 0 C k k + 1 = k 0 C k k + 1
102 94 fveq2d k = x C k k + 1 = C x x + 1
103 102 adantl φ x 0 k = x C k k + 1 = C x x + 1
104 fvexd φ x 0 C x x + 1 V
105 101 103 17 104 fvmptd φ x 0 k 0 C k k + 1 x = C x x + 1
106 97 fveq2d φ x 0 k 0 C k k + 1 x = C x x + 1
107 105 106 eqtr4d φ x 0 k 0 C k k + 1 x = k 0 C k k + 1 x
108 5 88 90 6 100 107 climabs φ k 0 C k k + 1 1
109 31 absnegi 1 = 1
110 abs1 1 = 1
111 109 110 eqtri 1 = 1
112 108 111 breqtrdi φ k 0 C k k + 1 1