Step |
Hyp |
Ref |
Expression |
1 |
|
binomcxp.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
2 |
|
binomcxp.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
binomcxp.lt |
⊢ ( 𝜑 → ( abs ‘ 𝐵 ) < ( abs ‘ 𝐴 ) ) |
4 |
|
binomcxp.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
5 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
6 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
7 |
|
peano2cn |
⊢ ( 𝐶 ∈ ℂ → ( 𝐶 + 1 ) ∈ ℂ ) |
8 |
4 7
|
syl |
⊢ ( 𝜑 → ( 𝐶 + 1 ) ∈ ℂ ) |
9 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
10 |
|
nn0ex |
⊢ ℕ0 ∈ V |
11 |
10
|
mptex |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) ∈ V |
12 |
11
|
a1i |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) ∈ V ) |
13 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) ) |
14 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑘 = 𝑥 ) → 𝑘 = 𝑥 ) |
15 |
14
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑘 = 𝑥 ) → ( 𝑘 + 1 ) = ( 𝑥 + 1 ) ) |
16 |
15
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑘 = 𝑥 ) → ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) = ( ( 𝐶 + 1 ) / ( 𝑥 + 1 ) ) ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → 𝑥 ∈ ℕ0 ) |
18 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝐶 + 1 ) / ( 𝑥 + 1 ) ) ∈ V ) |
19 |
13 16 17 18
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) ‘ 𝑥 ) = ( ( 𝐶 + 1 ) / ( 𝑥 + 1 ) ) ) |
20 |
5 6 8 9 12 19
|
divcnvshft |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) ⇝ 0 ) |
21 |
|
ovexd |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) ∘f − ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) ) ∈ V ) |
22 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
23 |
|
1cnd |
⊢ ( 𝑘 ∈ ℕ0 → 1 ∈ ℂ ) |
24 |
22 23
|
addcld |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℂ ) |
25 |
|
nn0p1nn |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ ) |
26 |
25
|
nnne0d |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ≠ 0 ) |
27 |
24 26
|
dividd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) = 1 ) |
28 |
27
|
mpteq2ia |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ 1 ) |
29 |
|
fconstmpt |
⊢ ( ℕ0 × { 1 } ) = ( 𝑘 ∈ ℕ0 ↦ 1 ) |
30 |
28 29
|
eqtr4i |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) = ( ℕ0 × { 1 } ) |
31 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
32 |
|
0z |
⊢ 0 ∈ ℤ |
33 |
5
|
eqimss2i |
⊢ ( ℤ≥ ‘ 0 ) ⊆ ℕ0 |
34 |
33 10
|
climconst2 |
⊢ ( ( 1 ∈ ℂ ∧ 0 ∈ ℤ ) → ( ℕ0 × { 1 } ) ⇝ 1 ) |
35 |
31 32 34
|
mp2an |
⊢ ( ℕ0 × { 1 } ) ⇝ 1 |
36 |
30 35
|
eqbrtri |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) ⇝ 1 |
37 |
36
|
a1i |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) ⇝ 1 ) |
38 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
39 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → 1 ∈ ℂ ) |
40 |
38 39
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( 𝐶 + 1 ) ∈ ℂ ) |
41 |
17
|
nn0cnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → 𝑥 ∈ ℂ ) |
42 |
41 39
|
addcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 + 1 ) ∈ ℂ ) |
43 |
|
nn0p1nn |
⊢ ( 𝑥 ∈ ℕ0 → ( 𝑥 + 1 ) ∈ ℕ ) |
44 |
43
|
nnne0d |
⊢ ( 𝑥 ∈ ℕ0 → ( 𝑥 + 1 ) ≠ 0 ) |
45 |
44
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( 𝑥 + 1 ) ≠ 0 ) |
46 |
40 42 45
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝐶 + 1 ) / ( 𝑥 + 1 ) ) ∈ ℂ ) |
47 |
19 46
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) ‘ 𝑥 ) ∈ ℂ ) |
48 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) ) |
49 |
15 15
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑘 = 𝑥 ) → ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) = ( ( 𝑥 + 1 ) / ( 𝑥 + 1 ) ) ) |
50 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑥 + 1 ) / ( 𝑥 + 1 ) ) ∈ V ) |
51 |
48 49 17 50
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) ‘ 𝑥 ) = ( ( 𝑥 + 1 ) / ( 𝑥 + 1 ) ) ) |
52 |
42 42 45
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑥 + 1 ) / ( 𝑥 + 1 ) ) ∈ ℂ ) |
53 |
51 52
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) ‘ 𝑥 ) ∈ ℂ ) |
54 |
|
ovex |
⊢ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ∈ V |
55 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) |
56 |
54 55
|
fnmpti |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) Fn ℕ0 |
57 |
56
|
a1i |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) Fn ℕ0 ) |
58 |
|
ovex |
⊢ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ∈ V |
59 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) |
60 |
58 59
|
fnmpti |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) Fn ℕ0 |
61 |
60
|
a1i |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) Fn ℕ0 ) |
62 |
10
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
63 |
|
inidm |
⊢ ( ℕ0 ∩ ℕ0 ) = ℕ0 |
64 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) ‘ 𝑥 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) ‘ 𝑥 ) ) |
65 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) ‘ 𝑥 ) = ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) ‘ 𝑥 ) ) |
66 |
57 61 62 62 63 64 65
|
ofval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) ∘f − ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) ) ‘ 𝑥 ) = ( ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) ‘ 𝑥 ) − ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) ‘ 𝑥 ) ) ) |
67 |
5 6 20 21 37 47 53 66
|
climsub |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) ∘f − ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) ) ⇝ ( 0 − 1 ) ) |
68 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ∈ V ) |
69 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ∈ V ) |
70 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) ) |
71 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) ) |
72 |
62 68 69 70 71
|
offval2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) ∘f − ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) − ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) ) ) |
73 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐶 + 1 ) ∈ ℂ ) |
74 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℂ ) |
75 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ≠ 0 ) |
76 |
73 74 74 75
|
divsubdird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 + 1 ) − ( 𝑘 + 1 ) ) / ( 𝑘 + 1 ) ) = ( ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) − ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) ) |
77 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
78 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℂ ) |
79 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 1 ∈ ℂ ) |
80 |
77 78 79
|
pnpcan2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝐶 + 1 ) − ( 𝑘 + 1 ) ) = ( 𝐶 − 𝑘 ) ) |
81 |
80
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 + 1 ) − ( 𝑘 + 1 ) ) / ( 𝑘 + 1 ) ) = ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) |
82 |
76 81
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) − ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) = ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) |
83 |
82
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) − ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) ) |
84 |
72 83
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 + 1 ) / ( 𝑘 + 1 ) ) ) ∘f − ( 𝑘 ∈ ℕ0 ↦ ( ( 𝑘 + 1 ) / ( 𝑘 + 1 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) ) |
85 |
|
df-neg |
⊢ - 1 = ( 0 − 1 ) |
86 |
85
|
eqcomi |
⊢ ( 0 − 1 ) = - 1 |
87 |
86
|
a1i |
⊢ ( 𝜑 → ( 0 − 1 ) = - 1 ) |
88 |
67 84 87
|
3brtr3d |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) ⇝ - 1 ) |
89 |
10
|
mptex |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) ) ∈ V |
90 |
89
|
a1i |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) ) ∈ V ) |
91 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) ) |
92 |
|
oveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝐶 − 𝑘 ) = ( 𝐶 − 𝑥 ) ) |
93 |
|
oveq1 |
⊢ ( 𝑘 = 𝑥 → ( 𝑘 + 1 ) = ( 𝑥 + 1 ) ) |
94 |
92 93
|
oveq12d |
⊢ ( 𝑘 = 𝑥 → ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) = ( ( 𝐶 − 𝑥 ) / ( 𝑥 + 1 ) ) ) |
95 |
94
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑘 = 𝑥 ) → ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) = ( ( 𝐶 − 𝑥 ) / ( 𝑥 + 1 ) ) ) |
96 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝐶 − 𝑥 ) / ( 𝑥 + 1 ) ) ∈ V ) |
97 |
91 95 17 96
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) ‘ 𝑥 ) = ( ( 𝐶 − 𝑥 ) / ( 𝑥 + 1 ) ) ) |
98 |
38 41
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( 𝐶 − 𝑥 ) ∈ ℂ ) |
99 |
98 42 45
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝐶 − 𝑥 ) / ( 𝑥 + 1 ) ) ∈ ℂ ) |
100 |
97 99
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) ‘ 𝑥 ) ∈ ℂ ) |
101 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) ) ) |
102 |
94
|
fveq2d |
⊢ ( 𝑘 = 𝑥 → ( abs ‘ ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) = ( abs ‘ ( ( 𝐶 − 𝑥 ) / ( 𝑥 + 1 ) ) ) ) |
103 |
102
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) ∧ 𝑘 = 𝑥 ) → ( abs ‘ ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) = ( abs ‘ ( ( 𝐶 − 𝑥 ) / ( 𝑥 + 1 ) ) ) ) |
104 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( abs ‘ ( ( 𝐶 − 𝑥 ) / ( 𝑥 + 1 ) ) ) ∈ V ) |
105 |
101 103 17 104
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) ) ‘ 𝑥 ) = ( abs ‘ ( ( 𝐶 − 𝑥 ) / ( 𝑥 + 1 ) ) ) ) |
106 |
97
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( abs ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) ‘ 𝑥 ) ) = ( abs ‘ ( ( 𝐶 − 𝑥 ) / ( 𝑥 + 1 ) ) ) ) |
107 |
105 106
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) ) ‘ 𝑥 ) = ( abs ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) ‘ 𝑥 ) ) ) |
108 |
5 88 90 6 100 107
|
climabs |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) ) ⇝ ( abs ‘ - 1 ) ) |
109 |
31
|
absnegi |
⊢ ( abs ‘ - 1 ) = ( abs ‘ 1 ) |
110 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
111 |
109 110
|
eqtri |
⊢ ( abs ‘ - 1 ) = 1 |
112 |
108 111
|
breqtrdi |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( 𝐶 − 𝑘 ) / ( 𝑘 + 1 ) ) ) ) ⇝ 1 ) |