Step |
Hyp |
Ref |
Expression |
1 |
|
binomcxp.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
2 |
|
binomcxp.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
binomcxp.lt |
⊢ ( 𝜑 → ( abs ‘ 𝐵 ) < ( abs ‘ 𝐴 ) ) |
4 |
|
binomcxp.c |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
5 |
|
binomcxplem.f |
⊢ 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) ) |
6 |
|
binomcxplem.s |
⊢ 𝑆 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
7 |
|
binomcxplem.r |
⊢ 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
8 |
|
binomcxplem.e |
⊢ 𝐸 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹 ‘ 𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) ) |
9 |
|
binomcxplem.d |
⊢ 𝐷 = ( ◡ abs “ ( 0 [,) 𝑅 ) ) |
10 |
|
nfcv |
⊢ Ⅎ 𝑏 ◡ abs |
11 |
|
nfcv |
⊢ Ⅎ 𝑏 0 |
12 |
|
nfcv |
⊢ Ⅎ 𝑏 [,) |
13 |
|
nfcv |
⊢ Ⅎ 𝑏 + |
14 |
|
nfmpt1 |
⊢ Ⅎ 𝑏 ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹 ‘ 𝑘 ) · ( 𝑏 ↑ 𝑘 ) ) ) ) |
15 |
6 14
|
nfcxfr |
⊢ Ⅎ 𝑏 𝑆 |
16 |
|
nfcv |
⊢ Ⅎ 𝑏 𝑟 |
17 |
15 16
|
nffv |
⊢ Ⅎ 𝑏 ( 𝑆 ‘ 𝑟 ) |
18 |
11 13 17
|
nfseq |
⊢ Ⅎ 𝑏 seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) |
19 |
18
|
nfel1 |
⊢ Ⅎ 𝑏 seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ |
20 |
|
nfcv |
⊢ Ⅎ 𝑏 ℝ |
21 |
19 20
|
nfrabw |
⊢ Ⅎ 𝑏 { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } |
22 |
|
nfcv |
⊢ Ⅎ 𝑏 ℝ* |
23 |
|
nfcv |
⊢ Ⅎ 𝑏 < |
24 |
21 22 23
|
nfsup |
⊢ Ⅎ 𝑏 sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) |
25 |
7 24
|
nfcxfr |
⊢ Ⅎ 𝑏 𝑅 |
26 |
11 12 25
|
nfov |
⊢ Ⅎ 𝑏 ( 0 [,) 𝑅 ) |
27 |
10 26
|
nfima |
⊢ Ⅎ 𝑏 ( ◡ abs “ ( 0 [,) 𝑅 ) ) |
28 |
9 27
|
nfcxfr |
⊢ Ⅎ 𝑏 𝐷 |
29 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐷 |
30 |
|
nfcv |
⊢ Ⅎ 𝑦 ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) |
31 |
|
nfcv |
⊢ Ⅎ 𝑏 ( ( 1 + 𝑦 ) ↑𝑐 - 𝐶 ) |
32 |
|
oveq2 |
⊢ ( 𝑏 = 𝑦 → ( 1 + 𝑏 ) = ( 1 + 𝑦 ) ) |
33 |
32
|
oveq1d |
⊢ ( 𝑏 = 𝑦 → ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) = ( ( 1 + 𝑦 ) ↑𝑐 - 𝐶 ) ) |
34 |
28 29 30 31 33
|
cbvmptf |
⊢ ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) = ( 𝑦 ∈ 𝐷 ↦ ( ( 1 + 𝑦 ) ↑𝑐 - 𝐶 ) ) |
35 |
34
|
oveq2i |
⊢ ( ℂ D ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( ℂ D ( 𝑦 ∈ 𝐷 ↦ ( ( 1 + 𝑦 ) ↑𝑐 - 𝐶 ) ) ) |
36 |
|
cnelprrecn |
⊢ ℂ ∈ { ℝ , ℂ } |
37 |
36
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ℂ ∈ { ℝ , ℂ } ) |
38 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) → 1 ∈ ℂ ) |
39 |
|
cnvimass |
⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs |
40 |
9 39
|
eqsstri |
⊢ 𝐷 ⊆ dom abs |
41 |
|
absf |
⊢ abs : ℂ ⟶ ℝ |
42 |
41
|
fdmi |
⊢ dom abs = ℂ |
43 |
40 42
|
sseqtri |
⊢ 𝐷 ⊆ ℂ |
44 |
43
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐷 ⊆ ℂ ) |
45 |
44
|
sselda |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) → 𝑦 ∈ ℂ ) |
46 |
38 45
|
addcld |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) → ( 1 + 𝑦 ) ∈ ℂ ) |
47 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) ∧ ( 1 + 𝑦 ) ∈ ℝ ) → ( 1 + 𝑦 ) ∈ ℝ ) |
48 |
|
1cnd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) ∧ ( 1 + 𝑦 ) ∈ ℝ ) → 1 ∈ ℂ ) |
49 |
45
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) ∧ ( 1 + 𝑦 ) ∈ ℝ ) → 𝑦 ∈ ℂ ) |
50 |
48 49
|
pncan2d |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) ∧ ( 1 + 𝑦 ) ∈ ℝ ) → ( ( 1 + 𝑦 ) − 1 ) = 𝑦 ) |
51 |
|
1red |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) ∧ ( 1 + 𝑦 ) ∈ ℝ ) → 1 ∈ ℝ ) |
52 |
47 51
|
resubcld |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) ∧ ( 1 + 𝑦 ) ∈ ℝ ) → ( ( 1 + 𝑦 ) − 1 ) ∈ ℝ ) |
53 |
50 52
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) ∧ ( 1 + 𝑦 ) ∈ ℝ ) → 𝑦 ∈ ℝ ) |
54 |
|
1pneg1e0 |
⊢ ( 1 + - 1 ) = 0 |
55 |
|
1red |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℝ ) |
56 |
55
|
renegcld |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ ℝ ) → - 1 ∈ ℝ ) |
57 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) |
58 |
|
ffn |
⊢ ( abs : ℂ ⟶ ℝ → abs Fn ℂ ) |
59 |
|
elpreima |
⊢ ( abs Fn ℂ → ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑦 ∈ ℂ ∧ ( abs ‘ 𝑦 ) ∈ ( 0 [,) 𝑅 ) ) ) ) |
60 |
41 58 59
|
mp2b |
⊢ ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑦 ∈ ℂ ∧ ( abs ‘ 𝑦 ) ∈ ( 0 [,) 𝑅 ) ) ) |
61 |
60
|
simprbi |
⊢ ( 𝑦 ∈ ( ◡ abs “ ( 0 [,) 𝑅 ) ) → ( abs ‘ 𝑦 ) ∈ ( 0 [,) 𝑅 ) ) |
62 |
61 9
|
eleq2s |
⊢ ( 𝑦 ∈ 𝐷 → ( abs ‘ 𝑦 ) ∈ ( 0 [,) 𝑅 ) ) |
63 |
|
0re |
⊢ 0 ∈ ℝ |
64 |
|
ssrab2 |
⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ |
65 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
66 |
64 65
|
sstri |
⊢ { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* |
67 |
|
supxrcl |
⊢ ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* ) |
68 |
66 67
|
ax-mp |
⊢ sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆 ‘ 𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* |
69 |
7 68
|
eqeltri |
⊢ 𝑅 ∈ ℝ* |
70 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( ( abs ‘ 𝑦 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑦 ) ∧ ( abs ‘ 𝑦 ) < 𝑅 ) ) ) |
71 |
63 69 70
|
mp2an |
⊢ ( ( abs ‘ 𝑦 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑦 ) ∧ ( abs ‘ 𝑦 ) < 𝑅 ) ) |
72 |
62 71
|
sylib |
⊢ ( 𝑦 ∈ 𝐷 → ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑦 ) ∧ ( abs ‘ 𝑦 ) < 𝑅 ) ) |
73 |
72
|
simp3d |
⊢ ( 𝑦 ∈ 𝐷 → ( abs ‘ 𝑦 ) < 𝑅 ) |
74 |
73
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) → ( abs ‘ 𝑦 ) < 𝑅 ) |
75 |
1 2 3 4 5 6 7
|
binomcxplemradcnv |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑅 = 1 ) |
76 |
75
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) → 𝑅 = 1 ) |
77 |
74 76
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) → ( abs ‘ 𝑦 ) < 1 ) |
78 |
77
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ ℝ ) → ( abs ‘ 𝑦 ) < 1 ) |
79 |
57 55
|
absltd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ ℝ ) → ( ( abs ‘ 𝑦 ) < 1 ↔ ( - 1 < 𝑦 ∧ 𝑦 < 1 ) ) ) |
80 |
78 79
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ ℝ ) → ( - 1 < 𝑦 ∧ 𝑦 < 1 ) ) |
81 |
80
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ ℝ ) → - 1 < 𝑦 ) |
82 |
56 57 55 81
|
ltadd2dd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ ℝ ) → ( 1 + - 1 ) < ( 1 + 𝑦 ) ) |
83 |
54 82
|
eqbrtrrid |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) ∧ 𝑦 ∈ ℝ ) → 0 < ( 1 + 𝑦 ) ) |
84 |
53 83
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) ∧ ( 1 + 𝑦 ) ∈ ℝ ) → 0 < ( 1 + 𝑦 ) ) |
85 |
47 84
|
elrpd |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) ∧ ( 1 + 𝑦 ) ∈ ℝ ) → ( 1 + 𝑦 ) ∈ ℝ+ ) |
86 |
85
|
ex |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( 1 + 𝑦 ) ∈ ℝ → ( 1 + 𝑦 ) ∈ ℝ+ ) ) |
87 |
|
eqid |
⊢ ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) ) |
88 |
87
|
ellogdm |
⊢ ( ( 1 + 𝑦 ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↔ ( ( 1 + 𝑦 ) ∈ ℂ ∧ ( ( 1 + 𝑦 ) ∈ ℝ → ( 1 + 𝑦 ) ∈ ℝ+ ) ) ) |
89 |
46 86 88
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) → ( 1 + 𝑦 ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) |
90 |
|
eldifi |
⊢ ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → 𝑥 ∈ ℂ ) |
91 |
90
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) → 𝑥 ∈ ℂ ) |
92 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐶 ∈ ℂ ) |
93 |
92
|
negcld |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → - 𝐶 ∈ ℂ ) |
94 |
93
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) → - 𝐶 ∈ ℂ ) |
95 |
91 94
|
cxpcld |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) → ( 𝑥 ↑𝑐 - 𝐶 ) ∈ ℂ ) |
96 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) → ( - 𝐶 · ( 𝑥 ↑𝑐 ( - 𝐶 − 1 ) ) ) ∈ V ) |
97 |
|
1cnd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ℂ ) → 1 ∈ ℂ ) |
98 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) |
99 |
97 98
|
addcld |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ℂ ) → ( 1 + 𝑥 ) ∈ ℂ ) |
100 |
|
c0ex |
⊢ 0 ∈ V |
101 |
100
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ℂ ) → 0 ∈ V ) |
102 |
|
1cnd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 1 ∈ ℂ ) |
103 |
37 102
|
dvmptc |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ 1 ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) ) |
104 |
37
|
dvmptid |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) ) |
105 |
37 97 101 103 98 97 104
|
dvmptadd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 1 + 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 0 + 1 ) ) ) |
106 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
107 |
106
|
mpteq2i |
⊢ ( 𝑥 ∈ ℂ ↦ ( 0 + 1 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) |
108 |
105 107
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 1 + 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) ) |
109 |
|
fvex |
⊢ ( TopOpen ‘ ℂfld ) ∈ V |
110 |
|
cnfldtps |
⊢ ℂfld ∈ TopSp |
111 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
112 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
113 |
111 112
|
tpsuni |
⊢ ( ℂfld ∈ TopSp → ℂ = ∪ ( TopOpen ‘ ℂfld ) ) |
114 |
110 113
|
ax-mp |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
115 |
114
|
restid |
⊢ ( ( TopOpen ‘ ℂfld ) ∈ V → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) ) |
116 |
109 115
|
ax-mp |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) |
117 |
116
|
eqcomi |
⊢ ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) |
118 |
112
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
119 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
120 |
119
|
cnbl0 |
⊢ ( 𝑅 ∈ ℝ* → ( ◡ abs “ ( 0 [,) 𝑅 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ) |
121 |
69 120
|
ax-mp |
⊢ ( ◡ abs “ ( 0 [,) 𝑅 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) |
122 |
9 121
|
eqtri |
⊢ 𝐷 = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) |
123 |
|
cnxmet |
⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) |
124 |
|
0cn |
⊢ 0 ∈ ℂ |
125 |
112
|
cnfldtopn |
⊢ ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) ) |
126 |
125
|
blopn |
⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ∈ ( TopOpen ‘ ℂfld ) ) |
127 |
123 124 69 126
|
mp3an |
⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ∈ ( TopOpen ‘ ℂfld ) |
128 |
122 127
|
eqeltri |
⊢ 𝐷 ∈ ( TopOpen ‘ ℂfld ) |
129 |
|
isopn3i |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝐷 ∈ ( TopOpen ‘ ℂfld ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) = 𝐷 ) |
130 |
118 128 129
|
mp2an |
⊢ ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) = 𝐷 |
131 |
130
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) = 𝐷 ) |
132 |
37 99 97 108 44 117 112 131
|
dvmptres2 |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑥 ∈ 𝐷 ↦ ( 1 + 𝑥 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ 1 ) ) |
133 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 1 + 𝑥 ) = ( 1 + 𝑦 ) ) |
134 |
133
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐷 ↦ ( 1 + 𝑥 ) ) = ( 𝑦 ∈ 𝐷 ↦ ( 1 + 𝑦 ) ) |
135 |
134
|
oveq2i |
⊢ ( ℂ D ( 𝑥 ∈ 𝐷 ↦ ( 1 + 𝑥 ) ) ) = ( ℂ D ( 𝑦 ∈ 𝐷 ↦ ( 1 + 𝑦 ) ) ) |
136 |
|
eqidd |
⊢ ( 𝑥 = 𝑦 → 1 = 1 ) |
137 |
136
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝐷 ↦ 1 ) = ( 𝑦 ∈ 𝐷 ↦ 1 ) |
138 |
132 135 137
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑦 ∈ 𝐷 ↦ ( 1 + 𝑦 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ 1 ) ) |
139 |
87
|
dvcncxp1 |
⊢ ( - 𝐶 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 𝑥 ↑𝑐 - 𝐶 ) ) ) = ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( - 𝐶 · ( 𝑥 ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ) |
140 |
93 139
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 𝑥 ↑𝑐 - 𝐶 ) ) ) = ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( - 𝐶 · ( 𝑥 ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ) |
141 |
|
oveq1 |
⊢ ( 𝑥 = ( 1 + 𝑦 ) → ( 𝑥 ↑𝑐 - 𝐶 ) = ( ( 1 + 𝑦 ) ↑𝑐 - 𝐶 ) ) |
142 |
|
oveq1 |
⊢ ( 𝑥 = ( 1 + 𝑦 ) → ( 𝑥 ↑𝑐 ( - 𝐶 − 1 ) ) = ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) |
143 |
142
|
oveq2d |
⊢ ( 𝑥 = ( 1 + 𝑦 ) → ( - 𝐶 · ( 𝑥 ↑𝑐 ( - 𝐶 − 1 ) ) ) = ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) |
144 |
37 37 89 38 95 96 138 140 141 143
|
dvmptco |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑦 ∈ 𝐷 ↦ ( ( 1 + 𝑦 ) ↑𝑐 - 𝐶 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ ( ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · 1 ) ) ) |
145 |
92
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) → 𝐶 ∈ ℂ ) |
146 |
145
|
negcld |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) → - 𝐶 ∈ ℂ ) |
147 |
146 38
|
subcld |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) → ( - 𝐶 − 1 ) ∈ ℂ ) |
148 |
46 147
|
cxpcld |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ∈ ℂ ) |
149 |
146 148
|
mulcld |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) → ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ∈ ℂ ) |
150 |
149
|
mulid1d |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦 ∈ 𝐷 ) → ( ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · 1 ) = ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) |
151 |
150
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐷 ↦ ( ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · 1 ) ) = ( 𝑦 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ) |
152 |
|
nfcv |
⊢ Ⅎ 𝑏 ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) |
153 |
|
nfcv |
⊢ Ⅎ 𝑦 ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) |
154 |
|
oveq2 |
⊢ ( 𝑦 = 𝑏 → ( 1 + 𝑦 ) = ( 1 + 𝑏 ) ) |
155 |
154
|
oveq1d |
⊢ ( 𝑦 = 𝑏 → ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) = ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) |
156 |
155
|
oveq2d |
⊢ ( 𝑦 = 𝑏 → ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) = ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) |
157 |
29 28 152 153 156
|
cbvmptf |
⊢ ( 𝑦 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) |
158 |
157
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑦 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ) |
159 |
144 151 158
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑦 ∈ 𝐷 ↦ ( ( 1 + 𝑦 ) ↑𝑐 - 𝐶 ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ) |
160 |
35 159
|
syl5eq |
⊢ ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑏 ∈ 𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) ) |