Metamath Proof Explorer


Theorem binomcxplemdvbinom

Description: Lemma for binomcxp . By the power and chain rules, calculate the derivative of ( ( 1 + b ) ^c -u C ) , with respect to b in the disk of convergence D . We later multiply the derivative in the later binomcxplemdvsum by this derivative to show that ( ( 1 + b ) ^c C ) (with a nonnegated C ) and the later sum, since both at b = 0 equal one, are the same. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses binomcxp.a ( 𝜑𝐴 ∈ ℝ+ )
binomcxp.b ( 𝜑𝐵 ∈ ℝ )
binomcxp.lt ( 𝜑 → ( abs ‘ 𝐵 ) < ( abs ‘ 𝐴 ) )
binomcxp.c ( 𝜑𝐶 ∈ ℂ )
binomcxplem.f 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) )
binomcxplem.s 𝑆 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹𝑘 ) · ( 𝑏𝑘 ) ) ) )
binomcxplem.r 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆𝑟 ) ) ∈ dom ⇝ } , ℝ* , < )
binomcxplem.e 𝐸 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) )
binomcxplem.d 𝐷 = ( abs “ ( 0 [,) 𝑅 ) )
Assertion binomcxplemdvbinom ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑏𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( 𝑏𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 binomcxp.a ( 𝜑𝐴 ∈ ℝ+ )
2 binomcxp.b ( 𝜑𝐵 ∈ ℝ )
3 binomcxp.lt ( 𝜑 → ( abs ‘ 𝐵 ) < ( abs ‘ 𝐴 ) )
4 binomcxp.c ( 𝜑𝐶 ∈ ℂ )
5 binomcxplem.f 𝐹 = ( 𝑗 ∈ ℕ0 ↦ ( 𝐶 C𝑐 𝑗 ) )
6 binomcxplem.s 𝑆 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹𝑘 ) · ( 𝑏𝑘 ) ) ) )
7 binomcxplem.r 𝑅 = sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆𝑟 ) ) ∈ dom ⇝ } , ℝ* , < )
8 binomcxplem.e 𝐸 = ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ ↦ ( ( 𝑘 · ( 𝐹𝑘 ) ) · ( 𝑏 ↑ ( 𝑘 − 1 ) ) ) ) )
9 binomcxplem.d 𝐷 = ( abs “ ( 0 [,) 𝑅 ) )
10 nfcv 𝑏 abs
11 nfcv 𝑏 0
12 nfcv 𝑏 [,)
13 nfcv 𝑏 +
14 nfmpt1 𝑏 ( 𝑏 ∈ ℂ ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( 𝐹𝑘 ) · ( 𝑏𝑘 ) ) ) )
15 6 14 nfcxfr 𝑏 𝑆
16 nfcv 𝑏 𝑟
17 15 16 nffv 𝑏 ( 𝑆𝑟 )
18 11 13 17 nfseq 𝑏 seq 0 ( + , ( 𝑆𝑟 ) )
19 18 nfel1 𝑏 seq 0 ( + , ( 𝑆𝑟 ) ) ∈ dom ⇝
20 nfcv 𝑏
21 19 20 nfrabw 𝑏 { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆𝑟 ) ) ∈ dom ⇝ }
22 nfcv 𝑏*
23 nfcv 𝑏 <
24 21 22 23 nfsup 𝑏 sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆𝑟 ) ) ∈ dom ⇝ } , ℝ* , < )
25 7 24 nfcxfr 𝑏 𝑅
26 11 12 25 nfov 𝑏 ( 0 [,) 𝑅 )
27 10 26 nfima 𝑏 ( abs “ ( 0 [,) 𝑅 ) )
28 9 27 nfcxfr 𝑏 𝐷
29 nfcv 𝑦 𝐷
30 nfcv 𝑦 ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 )
31 nfcv 𝑏 ( ( 1 + 𝑦 ) ↑𝑐 - 𝐶 )
32 oveq2 ( 𝑏 = 𝑦 → ( 1 + 𝑏 ) = ( 1 + 𝑦 ) )
33 32 oveq1d ( 𝑏 = 𝑦 → ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) = ( ( 1 + 𝑦 ) ↑𝑐 - 𝐶 ) )
34 28 29 30 31 33 cbvmptf ( 𝑏𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) = ( 𝑦𝐷 ↦ ( ( 1 + 𝑦 ) ↑𝑐 - 𝐶 ) )
35 34 oveq2i ( ℂ D ( 𝑏𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( ℂ D ( 𝑦𝐷 ↦ ( ( 1 + 𝑦 ) ↑𝑐 - 𝐶 ) ) )
36 cnelprrecn ℂ ∈ { ℝ , ℂ }
37 36 a1i ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ℂ ∈ { ℝ , ℂ } )
38 1cnd ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) → 1 ∈ ℂ )
39 cnvimass ( abs “ ( 0 [,) 𝑅 ) ) ⊆ dom abs
40 9 39 eqsstri 𝐷 ⊆ dom abs
41 absf abs : ℂ ⟶ ℝ
42 41 fdmi dom abs = ℂ
43 40 42 sseqtri 𝐷 ⊆ ℂ
44 43 a1i ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐷 ⊆ ℂ )
45 44 sselda ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) → 𝑦 ∈ ℂ )
46 38 45 addcld ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) → ( 1 + 𝑦 ) ∈ ℂ )
47 simpr ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) ∧ ( 1 + 𝑦 ) ∈ ℝ ) → ( 1 + 𝑦 ) ∈ ℝ )
48 1cnd ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) ∧ ( 1 + 𝑦 ) ∈ ℝ ) → 1 ∈ ℂ )
49 45 adantr ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) ∧ ( 1 + 𝑦 ) ∈ ℝ ) → 𝑦 ∈ ℂ )
50 48 49 pncan2d ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) ∧ ( 1 + 𝑦 ) ∈ ℝ ) → ( ( 1 + 𝑦 ) − 1 ) = 𝑦 )
51 1red ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) ∧ ( 1 + 𝑦 ) ∈ ℝ ) → 1 ∈ ℝ )
52 47 51 resubcld ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) ∧ ( 1 + 𝑦 ) ∈ ℝ ) → ( ( 1 + 𝑦 ) − 1 ) ∈ ℝ )
53 50 52 eqeltrrd ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) ∧ ( 1 + 𝑦 ) ∈ ℝ ) → 𝑦 ∈ ℝ )
54 1pneg1e0 ( 1 + - 1 ) = 0
55 1red ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℝ )
56 55 renegcld ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) ∧ 𝑦 ∈ ℝ ) → - 1 ∈ ℝ )
57 simpr ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ )
58 ffn ( abs : ℂ ⟶ ℝ → abs Fn ℂ )
59 elpreima ( abs Fn ℂ → ( 𝑦 ∈ ( abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑦 ∈ ℂ ∧ ( abs ‘ 𝑦 ) ∈ ( 0 [,) 𝑅 ) ) ) )
60 41 58 59 mp2b ( 𝑦 ∈ ( abs “ ( 0 [,) 𝑅 ) ) ↔ ( 𝑦 ∈ ℂ ∧ ( abs ‘ 𝑦 ) ∈ ( 0 [,) 𝑅 ) ) )
61 60 simprbi ( 𝑦 ∈ ( abs “ ( 0 [,) 𝑅 ) ) → ( abs ‘ 𝑦 ) ∈ ( 0 [,) 𝑅 ) )
62 61 9 eleq2s ( 𝑦𝐷 → ( abs ‘ 𝑦 ) ∈ ( 0 [,) 𝑅 ) )
63 0re 0 ∈ ℝ
64 ssrab2 { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ
65 ressxr ℝ ⊆ ℝ*
66 64 65 sstri { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ*
67 supxrcl ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆𝑟 ) ) ∈ dom ⇝ } ⊆ ℝ* → sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ* )
68 66 67 ax-mp sup ( { 𝑟 ∈ ℝ ∣ seq 0 ( + , ( 𝑆𝑟 ) ) ∈ dom ⇝ } , ℝ* , < ) ∈ ℝ*
69 7 68 eqeltri 𝑅 ∈ ℝ*
70 elico2 ( ( 0 ∈ ℝ ∧ 𝑅 ∈ ℝ* ) → ( ( abs ‘ 𝑦 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑦 ) ∧ ( abs ‘ 𝑦 ) < 𝑅 ) ) )
71 63 69 70 mp2an ( ( abs ‘ 𝑦 ) ∈ ( 0 [,) 𝑅 ) ↔ ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑦 ) ∧ ( abs ‘ 𝑦 ) < 𝑅 ) )
72 62 71 sylib ( 𝑦𝐷 → ( ( abs ‘ 𝑦 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑦 ) ∧ ( abs ‘ 𝑦 ) < 𝑅 ) )
73 72 simp3d ( 𝑦𝐷 → ( abs ‘ 𝑦 ) < 𝑅 )
74 73 adantl ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) → ( abs ‘ 𝑦 ) < 𝑅 )
75 1 2 3 4 5 6 7 binomcxplemradcnv ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝑅 = 1 )
76 75 adantr ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) → 𝑅 = 1 )
77 74 76 breqtrd ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) → ( abs ‘ 𝑦 ) < 1 )
78 77 adantr ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) ∧ 𝑦 ∈ ℝ ) → ( abs ‘ 𝑦 ) < 1 )
79 57 55 absltd ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) ∧ 𝑦 ∈ ℝ ) → ( ( abs ‘ 𝑦 ) < 1 ↔ ( - 1 < 𝑦𝑦 < 1 ) ) )
80 78 79 mpbid ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) ∧ 𝑦 ∈ ℝ ) → ( - 1 < 𝑦𝑦 < 1 ) )
81 80 simpld ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) ∧ 𝑦 ∈ ℝ ) → - 1 < 𝑦 )
82 56 57 55 81 ltadd2dd ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) ∧ 𝑦 ∈ ℝ ) → ( 1 + - 1 ) < ( 1 + 𝑦 ) )
83 54 82 eqbrtrrid ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) ∧ 𝑦 ∈ ℝ ) → 0 < ( 1 + 𝑦 ) )
84 53 83 syldan ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) ∧ ( 1 + 𝑦 ) ∈ ℝ ) → 0 < ( 1 + 𝑦 ) )
85 47 84 elrpd ( ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) ∧ ( 1 + 𝑦 ) ∈ ℝ ) → ( 1 + 𝑦 ) ∈ ℝ+ )
86 85 ex ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) → ( ( 1 + 𝑦 ) ∈ ℝ → ( 1 + 𝑦 ) ∈ ℝ+ ) )
87 eqid ( ℂ ∖ ( -∞ (,] 0 ) ) = ( ℂ ∖ ( -∞ (,] 0 ) )
88 87 ellogdm ( ( 1 + 𝑦 ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↔ ( ( 1 + 𝑦 ) ∈ ℂ ∧ ( ( 1 + 𝑦 ) ∈ ℝ → ( 1 + 𝑦 ) ∈ ℝ+ ) ) )
89 46 86 88 sylanbrc ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) → ( 1 + 𝑦 ) ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) )
90 eldifi ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) → 𝑥 ∈ ℂ )
91 90 adantl ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) → 𝑥 ∈ ℂ )
92 4 adantr ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 𝐶 ∈ ℂ )
93 92 negcld ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → - 𝐶 ∈ ℂ )
94 93 adantr ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) → - 𝐶 ∈ ℂ )
95 91 94 cxpcld ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) → ( 𝑥𝑐 - 𝐶 ) ∈ ℂ )
96 ovexd ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ) → ( - 𝐶 · ( 𝑥𝑐 ( - 𝐶 − 1 ) ) ) ∈ V )
97 1cnd ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ℂ ) → 1 ∈ ℂ )
98 simpr ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ )
99 97 98 addcld ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ℂ ) → ( 1 + 𝑥 ) ∈ ℂ )
100 c0ex 0 ∈ V
101 100 a1i ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑥 ∈ ℂ ) → 0 ∈ V )
102 1cnd ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → 1 ∈ ℂ )
103 37 102 dvmptc ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ 1 ) ) = ( 𝑥 ∈ ℂ ↦ 0 ) )
104 37 dvmptid ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) )
105 37 97 101 103 98 97 104 dvmptadd ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 1 + 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 0 + 1 ) ) )
106 0p1e1 ( 0 + 1 ) = 1
107 106 mpteq2i ( 𝑥 ∈ ℂ ↦ ( 0 + 1 ) ) = ( 𝑥 ∈ ℂ ↦ 1 )
108 105 107 eqtrdi ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 1 + 𝑥 ) ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) )
109 fvex ( TopOpen ‘ ℂfld ) ∈ V
110 cnfldtps fld ∈ TopSp
111 cnfldbas ℂ = ( Base ‘ ℂfld )
112 eqid ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld )
113 111 112 tpsuni ( ℂfld ∈ TopSp → ℂ = ( TopOpen ‘ ℂfld ) )
114 110 113 ax-mp ℂ = ( TopOpen ‘ ℂfld )
115 114 restid ( ( TopOpen ‘ ℂfld ) ∈ V → ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld ) )
116 109 115 ax-mp ( ( TopOpen ‘ ℂfld ) ↾t ℂ ) = ( TopOpen ‘ ℂfld )
117 116 eqcomi ( TopOpen ‘ ℂfld ) = ( ( TopOpen ‘ ℂfld ) ↾t ℂ )
118 112 cnfldtop ( TopOpen ‘ ℂfld ) ∈ Top
119 eqid ( abs ∘ − ) = ( abs ∘ − )
120 119 cnbl0 ( 𝑅 ∈ ℝ* → ( abs “ ( 0 [,) 𝑅 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) )
121 69 120 ax-mp ( abs “ ( 0 [,) 𝑅 ) ) = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 )
122 9 121 eqtri 𝐷 = ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 )
123 cnxmet ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ )
124 0cn 0 ∈ ℂ
125 112 cnfldtopn ( TopOpen ‘ ℂfld ) = ( MetOpen ‘ ( abs ∘ − ) )
126 125 blopn ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 𝑅 ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ∈ ( TopOpen ‘ ℂfld ) )
127 123 124 69 126 mp3an ( 0 ( ball ‘ ( abs ∘ − ) ) 𝑅 ) ∈ ( TopOpen ‘ ℂfld )
128 122 127 eqeltri 𝐷 ∈ ( TopOpen ‘ ℂfld )
129 isopn3i ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ 𝐷 ∈ ( TopOpen ‘ ℂfld ) ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) = 𝐷 )
130 118 128 129 mp2an ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) = 𝐷
131 130 a1i ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ( int ‘ ( TopOpen ‘ ℂfld ) ) ‘ 𝐷 ) = 𝐷 )
132 37 99 97 108 44 117 112 131 dvmptres2 ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑥𝐷 ↦ ( 1 + 𝑥 ) ) ) = ( 𝑥𝐷 ↦ 1 ) )
133 oveq2 ( 𝑥 = 𝑦 → ( 1 + 𝑥 ) = ( 1 + 𝑦 ) )
134 133 cbvmptv ( 𝑥𝐷 ↦ ( 1 + 𝑥 ) ) = ( 𝑦𝐷 ↦ ( 1 + 𝑦 ) )
135 134 oveq2i ( ℂ D ( 𝑥𝐷 ↦ ( 1 + 𝑥 ) ) ) = ( ℂ D ( 𝑦𝐷 ↦ ( 1 + 𝑦 ) ) )
136 eqidd ( 𝑥 = 𝑦 → 1 = 1 )
137 136 cbvmptv ( 𝑥𝐷 ↦ 1 ) = ( 𝑦𝐷 ↦ 1 )
138 132 135 137 3eqtr3g ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑦𝐷 ↦ ( 1 + 𝑦 ) ) ) = ( 𝑦𝐷 ↦ 1 ) )
139 87 dvcncxp1 ( - 𝐶 ∈ ℂ → ( ℂ D ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 𝑥𝑐 - 𝐶 ) ) ) = ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( - 𝐶 · ( 𝑥𝑐 ( - 𝐶 − 1 ) ) ) ) )
140 93 139 syl ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( 𝑥𝑐 - 𝐶 ) ) ) = ( 𝑥 ∈ ( ℂ ∖ ( -∞ (,] 0 ) ) ↦ ( - 𝐶 · ( 𝑥𝑐 ( - 𝐶 − 1 ) ) ) ) )
141 oveq1 ( 𝑥 = ( 1 + 𝑦 ) → ( 𝑥𝑐 - 𝐶 ) = ( ( 1 + 𝑦 ) ↑𝑐 - 𝐶 ) )
142 oveq1 ( 𝑥 = ( 1 + 𝑦 ) → ( 𝑥𝑐 ( - 𝐶 − 1 ) ) = ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) )
143 142 oveq2d ( 𝑥 = ( 1 + 𝑦 ) → ( - 𝐶 · ( 𝑥𝑐 ( - 𝐶 − 1 ) ) ) = ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) )
144 37 37 89 38 95 96 138 140 141 143 dvmptco ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑦𝐷 ↦ ( ( 1 + 𝑦 ) ↑𝑐 - 𝐶 ) ) ) = ( 𝑦𝐷 ↦ ( ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · 1 ) ) )
145 92 adantr ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) → 𝐶 ∈ ℂ )
146 145 negcld ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) → - 𝐶 ∈ ℂ )
147 146 38 subcld ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) → ( - 𝐶 − 1 ) ∈ ℂ )
148 46 147 cxpcld ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) → ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ∈ ℂ )
149 146 148 mulcld ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) → ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ∈ ℂ )
150 149 mulid1d ( ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) ∧ 𝑦𝐷 ) → ( ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · 1 ) = ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) )
151 150 mpteq2dva ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑦𝐷 ↦ ( ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) · 1 ) ) = ( 𝑦𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) )
152 nfcv 𝑏 ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) )
153 nfcv 𝑦 ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) )
154 oveq2 ( 𝑦 = 𝑏 → ( 1 + 𝑦 ) = ( 1 + 𝑏 ) )
155 154 oveq1d ( 𝑦 = 𝑏 → ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) = ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) )
156 155 oveq2d ( 𝑦 = 𝑏 → ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) = ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) )
157 29 28 152 153 156 cbvmptf ( 𝑦𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) = ( 𝑏𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) )
158 157 a1i ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( 𝑦𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑦 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) = ( 𝑏𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) )
159 144 151 158 3eqtrd ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑦𝐷 ↦ ( ( 1 + 𝑦 ) ↑𝑐 - 𝐶 ) ) ) = ( 𝑏𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) )
160 35 159 syl5eq ( ( 𝜑 ∧ ¬ 𝐶 ∈ ℕ0 ) → ( ℂ D ( 𝑏𝐷 ↦ ( ( 1 + 𝑏 ) ↑𝑐 - 𝐶 ) ) ) = ( 𝑏𝐷 ↦ ( - 𝐶 · ( ( 1 + 𝑏 ) ↑𝑐 ( - 𝐶 − 1 ) ) ) ) )