Step |
Hyp |
Ref |
Expression |
1 |
|
binomcxp.a |
|
2 |
|
binomcxp.b |
|
3 |
|
binomcxp.lt |
|
4 |
|
binomcxp.c |
|
5 |
|
binomcxplem.f |
|
6 |
|
binomcxplem.s |
|
7 |
|
binomcxplem.r |
|
8 |
|
binomcxplem.e |
|
9 |
|
binomcxplem.d |
|
10 |
|
nfcv |
|
11 |
|
nfcv |
|
12 |
|
nfcv |
|
13 |
|
nfcv |
|
14 |
|
nfmpt1 |
|
15 |
6 14
|
nfcxfr |
|
16 |
|
nfcv |
|
17 |
15 16
|
nffv |
|
18 |
11 13 17
|
nfseq |
|
19 |
18
|
nfel1 |
|
20 |
|
nfcv |
|
21 |
19 20
|
nfrabw |
|
22 |
|
nfcv |
|
23 |
|
nfcv |
|
24 |
21 22 23
|
nfsup |
|
25 |
7 24
|
nfcxfr |
|
26 |
11 12 25
|
nfov |
|
27 |
10 26
|
nfima |
|
28 |
9 27
|
nfcxfr |
|
29 |
|
nfcv |
|
30 |
|
nfcv |
|
31 |
|
nfcv |
|
32 |
|
oveq2 |
|
33 |
32
|
oveq1d |
|
34 |
28 29 30 31 33
|
cbvmptf |
|
35 |
34
|
oveq2i |
|
36 |
|
cnelprrecn |
|
37 |
36
|
a1i |
|
38 |
|
1cnd |
|
39 |
|
cnvimass |
|
40 |
9 39
|
eqsstri |
|
41 |
|
absf |
|
42 |
41
|
fdmi |
|
43 |
40 42
|
sseqtri |
|
44 |
43
|
a1i |
|
45 |
44
|
sselda |
|
46 |
38 45
|
addcld |
|
47 |
|
simpr |
|
48 |
|
1cnd |
|
49 |
45
|
adantr |
|
50 |
48 49
|
pncan2d |
|
51 |
|
1red |
|
52 |
47 51
|
resubcld |
|
53 |
50 52
|
eqeltrrd |
|
54 |
|
1pneg1e0 |
|
55 |
|
1red |
|
56 |
55
|
renegcld |
|
57 |
|
simpr |
|
58 |
|
ffn |
|
59 |
|
elpreima |
|
60 |
41 58 59
|
mp2b |
|
61 |
60
|
simprbi |
|
62 |
61 9
|
eleq2s |
|
63 |
|
0re |
|
64 |
|
ssrab2 |
|
65 |
|
ressxr |
|
66 |
64 65
|
sstri |
|
67 |
|
supxrcl |
|
68 |
66 67
|
ax-mp |
|
69 |
7 68
|
eqeltri |
|
70 |
|
elico2 |
|
71 |
63 69 70
|
mp2an |
|
72 |
62 71
|
sylib |
|
73 |
72
|
simp3d |
|
74 |
73
|
adantl |
|
75 |
1 2 3 4 5 6 7
|
binomcxplemradcnv |
|
76 |
75
|
adantr |
|
77 |
74 76
|
breqtrd |
|
78 |
77
|
adantr |
|
79 |
57 55
|
absltd |
|
80 |
78 79
|
mpbid |
|
81 |
80
|
simpld |
|
82 |
56 57 55 81
|
ltadd2dd |
|
83 |
54 82
|
eqbrtrrid |
|
84 |
53 83
|
syldan |
|
85 |
47 84
|
elrpd |
|
86 |
85
|
ex |
|
87 |
|
eqid |
|
88 |
87
|
ellogdm |
|
89 |
46 86 88
|
sylanbrc |
|
90 |
|
eldifi |
|
91 |
90
|
adantl |
|
92 |
4
|
adantr |
|
93 |
92
|
negcld |
|
94 |
93
|
adantr |
|
95 |
91 94
|
cxpcld |
|
96 |
|
ovexd |
|
97 |
|
1cnd |
|
98 |
|
simpr |
|
99 |
97 98
|
addcld |
|
100 |
|
c0ex |
|
101 |
100
|
a1i |
|
102 |
|
1cnd |
|
103 |
37 102
|
dvmptc |
|
104 |
37
|
dvmptid |
|
105 |
37 97 101 103 98 97 104
|
dvmptadd |
|
106 |
|
0p1e1 |
|
107 |
106
|
mpteq2i |
|
108 |
105 107
|
eqtrdi |
|
109 |
|
fvex |
|
110 |
|
cnfldtps |
|
111 |
|
cnfldbas |
|
112 |
|
eqid |
|
113 |
111 112
|
tpsuni |
|
114 |
110 113
|
ax-mp |
|
115 |
114
|
restid |
|
116 |
109 115
|
ax-mp |
|
117 |
116
|
eqcomi |
|
118 |
112
|
cnfldtop |
|
119 |
|
eqid |
|
120 |
119
|
cnbl0 |
|
121 |
69 120
|
ax-mp |
|
122 |
9 121
|
eqtri |
|
123 |
|
cnxmet |
|
124 |
|
0cn |
|
125 |
112
|
cnfldtopn |
|
126 |
125
|
blopn |
|
127 |
123 124 69 126
|
mp3an |
|
128 |
122 127
|
eqeltri |
|
129 |
|
isopn3i |
|
130 |
118 128 129
|
mp2an |
|
131 |
130
|
a1i |
|
132 |
37 99 97 108 44 117 112 131
|
dvmptres2 |
|
133 |
|
oveq2 |
|
134 |
133
|
cbvmptv |
|
135 |
134
|
oveq2i |
|
136 |
|
eqidd |
|
137 |
136
|
cbvmptv |
|
138 |
132 135 137
|
3eqtr3g |
|
139 |
87
|
dvcncxp1 |
|
140 |
93 139
|
syl |
|
141 |
|
oveq1 |
|
142 |
|
oveq1 |
|
143 |
142
|
oveq2d |
|
144 |
37 37 89 38 95 96 138 140 141 143
|
dvmptco |
|
145 |
92
|
adantr |
|
146 |
145
|
negcld |
|
147 |
146 38
|
subcld |
|
148 |
46 147
|
cxpcld |
|
149 |
146 148
|
mulcld |
|
150 |
149
|
mulid1d |
|
151 |
150
|
mpteq2dva |
|
152 |
|
nfcv |
|
153 |
|
nfcv |
|
154 |
|
oveq2 |
|
155 |
154
|
oveq1d |
|
156 |
155
|
oveq2d |
|
157 |
29 28 152 153 156
|
cbvmptf |
|
158 |
157
|
a1i |
|
159 |
144 151 158
|
3eqtrd |
|
160 |
35 159
|
syl5eq |
|