Metamath Proof Explorer


Theorem dvcncxp1

Description: Derivative of complex power with respect to first argument on the complex plane. (Contributed by Brendan Leahy, 18-Dec-2018)

Ref Expression
Hypothesis dvcncxp1.d D=−∞0
Assertion dvcncxp1 AdxDxAdx=xDAxA1

Proof

Step Hyp Ref Expression
1 dvcncxp1.d D=−∞0
2 cnelprrecn
3 2 a1i A
4 difss −∞0
5 1 4 eqsstri D
6 5 sseli xDx
7 1 logdmn0 xDx0
8 6 7 logcld xDlogx
9 8 adantl AxDlogx
10 6 7 reccld xD1x
11 10 adantl AxD1x
12 mulcl AyAy
13 efcl AyeAy
14 12 13 syl AyeAy
15 ovexd AyeAyAV
16 1 logcn logD:Dcn
17 cncff logD:DcnlogD:D
18 16 17 mp1i AlogD:D
19 18 feqmptd AlogD=xDlogDx
20 fvres xDlogDx=logx
21 20 mpteq2ia xDlogDx=xDlogx
22 19 21 eqtrdi AlogD=xDlogx
23 22 oveq2d ADlogD=dxDlogxdx
24 1 dvlog DlogD=xD1x
25 23 24 eqtr3di AdxDlogxdx=xD1x
26 simpl AyA
27 efcl xex
28 27 adantl Axex
29 simpr Ayy
30 1cnd Ay1
31 3 dvmptid Adyydy=y1
32 id AA
33 3 29 30 31 32 dvmptcmul AdyAydy=yA1
34 mulrid AA1=A
35 34 mpteq2dv AyA1=yA
36 33 35 eqtrd AdyAydy=yA
37 dvef Dexp=exp
38 eff exp:
39 38 a1i Aexp:
40 39 feqmptd Aexp=xex
41 40 oveq2d ADexp=dxexdx
42 37 41 40 3eqtr3a Adxexdx=xex
43 fveq2 x=Ayex=eAy
44 3 3 12 26 28 28 36 42 43 43 dvmptco AdyeAydy=yeAyA
45 oveq2 y=logxAy=Alogx
46 45 fveq2d y=logxeAy=eAlogx
47 46 oveq1d y=logxeAyA=eAlogxA
48 3 3 9 11 14 15 25 44 46 47 dvmptco AdxDeAlogxdx=xDeAlogxA1x
49 6 adantl AxDx
50 7 adantl AxDx0
51 simpl AxDA
52 49 50 51 cxpefd AxDxA=eAlogx
53 52 mpteq2dva AxDxA=xDeAlogx
54 53 oveq2d AdxDxAdx=dxDeAlogxdx
55 1cnd AxD1
56 49 50 51 55 cxpsubd AxDxA1=xAx1
57 49 cxp1d AxDx1=x
58 57 oveq2d AxDxAx1=xAx
59 49 51 cxpcld AxDxA
60 59 49 50 divrecd AxDxAx=xA1x
61 56 58 60 3eqtrd AxDxA1=xA1x
62 61 oveq2d AxDAxA1=AxA1x
63 51 59 11 mul12d AxDAxA1x=xAA1x
64 59 51 11 mulassd AxDxAA1x=xAA1x
65 63 64 eqtr4d AxDAxA1x=xAA1x
66 52 oveq1d AxDxAA=eAlogxA
67 66 oveq1d AxDxAA1x=eAlogxA1x
68 62 65 67 3eqtrd AxDAxA1=eAlogxA1x
69 68 mpteq2dva AxDAxA1=xDeAlogxA1x
70 48 54 69 3eqtr4d AdxDxAdx=xDAxA1