Description: Derivative of complex power with respect to first argument on the complex plane. (Contributed by Brendan Leahy, 18-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dvcncxp1.d | |
|
Assertion | dvcncxp1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvcncxp1.d | |
|
2 | cnelprrecn | |
|
3 | 2 | a1i | |
4 | difss | |
|
5 | 1 4 | eqsstri | |
6 | 5 | sseli | |
7 | 1 | logdmn0 | |
8 | 6 7 | logcld | |
9 | 8 | adantl | |
10 | 6 7 | reccld | |
11 | 10 | adantl | |
12 | mulcl | |
|
13 | efcl | |
|
14 | 12 13 | syl | |
15 | ovexd | |
|
16 | 1 | logcn | |
17 | cncff | |
|
18 | 16 17 | mp1i | |
19 | 18 | feqmptd | |
20 | fvres | |
|
21 | 20 | mpteq2ia | |
22 | 19 21 | eqtrdi | |
23 | 22 | oveq2d | |
24 | 1 | dvlog | |
25 | 23 24 | eqtr3di | |
26 | simpl | |
|
27 | efcl | |
|
28 | 27 | adantl | |
29 | simpr | |
|
30 | 1cnd | |
|
31 | 3 | dvmptid | |
32 | id | |
|
33 | 3 29 30 31 32 | dvmptcmul | |
34 | mulrid | |
|
35 | 34 | mpteq2dv | |
36 | 33 35 | eqtrd | |
37 | dvef | |
|
38 | eff | |
|
39 | 38 | a1i | |
40 | 39 | feqmptd | |
41 | 40 | oveq2d | |
42 | 37 41 40 | 3eqtr3a | |
43 | fveq2 | |
|
44 | 3 3 12 26 28 28 36 42 43 43 | dvmptco | |
45 | oveq2 | |
|
46 | 45 | fveq2d | |
47 | 46 | oveq1d | |
48 | 3 3 9 11 14 15 25 44 46 47 | dvmptco | |
49 | 6 | adantl | |
50 | 7 | adantl | |
51 | simpl | |
|
52 | 49 50 51 | cxpefd | |
53 | 52 | mpteq2dva | |
54 | 53 | oveq2d | |
55 | 1cnd | |
|
56 | 49 50 51 55 | cxpsubd | |
57 | 49 | cxp1d | |
58 | 57 | oveq2d | |
59 | 49 51 | cxpcld | |
60 | 59 49 50 | divrecd | |
61 | 56 58 60 | 3eqtrd | |
62 | 61 | oveq2d | |
63 | 51 59 11 | mul12d | |
64 | 59 51 11 | mulassd | |
65 | 63 64 | eqtr4d | |
66 | 52 | oveq1d | |
67 | 66 | oveq1d | |
68 | 62 65 67 | 3eqtrd | |
69 | 68 | mpteq2dva | |
70 | 48 54 69 | 3eqtr4d | |