Description: Derivative of square root function. (Contributed by Brendan Leahy, 18-Dec-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dvcncxp1.d | |
|
Assertion | dvcnsqrt | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvcncxp1.d | |
|
2 | halfcn | |
|
3 | 1 | dvcncxp1 | |
4 | 2 3 | ax-mp | |
5 | difss | |
|
6 | 1 5 | eqsstri | |
7 | 6 | sseli | |
8 | cxpsqrt | |
|
9 | 7 8 | syl | |
10 | 9 | mpteq2ia | |
11 | 10 | oveq2i | |
12 | 1p0e1 | |
|
13 | ax-1cn | |
|
14 | 2halves | |
|
15 | 13 14 | ax-mp | |
16 | 12 15 | eqtr4i | |
17 | 0cn | |
|
18 | addsubeq4 | |
|
19 | 13 17 2 2 18 | mp4an | |
20 | 16 19 | mpbi | |
21 | df-neg | |
|
22 | 20 21 | eqtr4i | |
23 | 22 | oveq2i | |
24 | 1 | logdmn0 | |
25 | 2 | a1i | |
26 | 7 24 25 | cxpnegd | |
27 | 23 26 | eqtrid | |
28 | 9 | oveq2d | |
29 | 27 28 | eqtrd | |
30 | 29 | oveq2d | |
31 | 1cnd | |
|
32 | 2cnd | |
|
33 | 7 | sqrtcld | |
34 | 2ne0 | |
|
35 | 34 | a1i | |
36 | 7 | adantr | |
37 | simpr | |
|
38 | 36 37 | sqr00d | |
39 | 38 | ex | |
40 | 39 | necon3d | |
41 | 24 40 | mpd | |
42 | 31 32 31 33 35 41 | divmuldivd | |
43 | 1t1e1 | |
|
44 | 43 | oveq1i | |
45 | 42 44 | eqtrdi | |
46 | 30 45 | eqtrd | |
47 | 46 | mpteq2ia | |
48 | 4 11 47 | 3eqtr3i | |