Metamath Proof Explorer


Theorem dvcnsqrt

Description: Derivative of square root function. (Contributed by Brendan Leahy, 18-Dec-2018)

Ref Expression
Hypothesis dvcncxp1.d D=−∞0
Assertion dvcnsqrt dxDxdx=xD12x

Proof

Step Hyp Ref Expression
1 dvcncxp1.d D=−∞0
2 halfcn 12
3 1 dvcncxp1 12dxDx12dx=xD12x121
4 2 3 ax-mp dxDx12dx=xD12x121
5 difss −∞0
6 1 5 eqsstri D
7 6 sseli xDx
8 cxpsqrt xx12=x
9 7 8 syl xDx12=x
10 9 mpteq2ia xDx12=xDx
11 10 oveq2i dxDx12dx=dxDxdx
12 1p0e1 1+0=1
13 ax-1cn 1
14 2halves 112+12=1
15 13 14 ax-mp 12+12=1
16 12 15 eqtr4i 1+0=12+12
17 0cn 0
18 addsubeq4 1012121+0=12+12121=012
19 13 17 2 2 18 mp4an 1+0=12+12121=012
20 16 19 mpbi 121=012
21 df-neg 12=012
22 20 21 eqtr4i 121=12
23 22 oveq2i x121=x12
24 1 logdmn0 xDx0
25 2 a1i xD12
26 7 24 25 cxpnegd xDx12=1x12
27 23 26 eqtrid xDx121=1x12
28 9 oveq2d xD1x12=1x
29 27 28 eqtrd xDx121=1x
30 29 oveq2d xD12x121=121x
31 1cnd xD1
32 2cnd xD2
33 7 sqrtcld xDx
34 2ne0 20
35 34 a1i xD20
36 7 adantr xDx=0x
37 simpr xDx=0x=0
38 36 37 sqr00d xDx=0x=0
39 38 ex xDx=0x=0
40 39 necon3d xDx0x0
41 24 40 mpd xDx0
42 31 32 31 33 35 41 divmuldivd xD121x=112x
43 1t1e1 11=1
44 43 oveq1i 112x=12x
45 42 44 eqtrdi xD121x=12x
46 30 45 eqtrd xD12x121=12x
47 46 mpteq2ia xD12x121=xD12x
48 4 11 47 3eqtr3i dxDxdx=xD12x