| Step |
Hyp |
Ref |
Expression |
| 1 |
|
binomcxp.a |
|
| 2 |
|
binomcxp.b |
|
| 3 |
|
binomcxp.lt |
|
| 4 |
|
binomcxp.c |
|
| 5 |
|
binomcxplem.f |
|
| 6 |
|
binomcxplem.s |
|
| 7 |
|
binomcxplem.r |
|
| 8 |
|
simpl |
|
| 9 |
8
|
oveq1d |
|
| 10 |
9
|
oveq2d |
|
| 11 |
10
|
mpteq2dva |
|
| 12 |
|
fveq2 |
|
| 13 |
|
oveq2 |
|
| 14 |
12 13
|
oveq12d |
|
| 15 |
14
|
cbvmptv |
|
| 16 |
11 15
|
eqtrdi |
|
| 17 |
16
|
cbvmptv |
|
| 18 |
6 17
|
eqtri |
|
| 19 |
4
|
ad2antrr |
|
| 20 |
|
simpr |
|
| 21 |
19 20
|
bcccl |
|
| 22 |
21 5
|
fmptd |
|
| 23 |
|
fvoveq1 |
|
| 24 |
|
fveq2 |
|
| 25 |
23 24
|
oveq12d |
|
| 26 |
25
|
fveq2d |
|
| 27 |
26
|
cbvmptv |
|
| 28 |
|
nn0uz |
|
| 29 |
|
0nn0 |
|
| 30 |
29
|
a1i |
|
| 31 |
5
|
a1i |
|
| 32 |
|
simpr |
|
| 33 |
32
|
oveq2d |
|
| 34 |
|
simpr |
|
| 35 |
|
ovexd |
|
| 36 |
31 33 34 35
|
fvmptd |
|
| 37 |
|
elfznn0 |
|
| 38 |
37
|
con3i |
|
| 39 |
38
|
ad2antlr |
|
| 40 |
4
|
adantr |
|
| 41 |
|
simpr |
|
| 42 |
40 41
|
bcc0 |
|
| 43 |
42
|
necon3abid |
|
| 44 |
43
|
adantlr |
|
| 45 |
39 44
|
mpbird |
|
| 46 |
36 45
|
eqnetrd |
|
| 47 |
1 2 3 4 5
|
binomcxplemfrat |
|
| 48 |
|
ax-1ne0 |
|
| 49 |
48
|
a1i |
|
| 50 |
18 22 7 27 28 30 46 47 49
|
radcnvrat |
|
| 51 |
|
1div1e1 |
|
| 52 |
50 51
|
eqtrdi |
|