Step |
Hyp |
Ref |
Expression |
1 |
|
binomcxp.a |
|
2 |
|
binomcxp.b |
|
3 |
|
binomcxp.lt |
|
4 |
|
binomcxp.c |
|
5 |
|
binomcxplem.f |
|
6 |
|
binomcxplem.s |
|
7 |
|
binomcxplem.r |
|
8 |
|
simpl |
|
9 |
8
|
oveq1d |
|
10 |
9
|
oveq2d |
|
11 |
10
|
mpteq2dva |
|
12 |
|
fveq2 |
|
13 |
|
oveq2 |
|
14 |
12 13
|
oveq12d |
|
15 |
14
|
cbvmptv |
|
16 |
11 15
|
eqtrdi |
|
17 |
16
|
cbvmptv |
|
18 |
6 17
|
eqtri |
|
19 |
4
|
ad2antrr |
|
20 |
|
simpr |
|
21 |
19 20
|
bcccl |
|
22 |
21 5
|
fmptd |
|
23 |
|
fvoveq1 |
|
24 |
|
fveq2 |
|
25 |
23 24
|
oveq12d |
|
26 |
25
|
fveq2d |
|
27 |
26
|
cbvmptv |
|
28 |
|
nn0uz |
|
29 |
|
0nn0 |
|
30 |
29
|
a1i |
|
31 |
5
|
a1i |
|
32 |
|
simpr |
|
33 |
32
|
oveq2d |
|
34 |
|
simpr |
|
35 |
|
ovexd |
|
36 |
31 33 34 35
|
fvmptd |
|
37 |
|
elfznn0 |
|
38 |
37
|
con3i |
|
39 |
38
|
ad2antlr |
|
40 |
4
|
adantr |
|
41 |
|
simpr |
|
42 |
40 41
|
bcc0 |
|
43 |
42
|
necon3abid |
|
44 |
43
|
adantlr |
|
45 |
39 44
|
mpbird |
|
46 |
36 45
|
eqnetrd |
|
47 |
1 2 3 4 5
|
binomcxplemfrat |
|
48 |
|
ax-1ne0 |
|
49 |
48
|
a1i |
|
50 |
18 22 7 27 28 30 46 47 49
|
radcnvrat |
|
51 |
|
1div1e1 |
|
52 |
50 51
|
eqtrdi |
|