Step |
Hyp |
Ref |
Expression |
1 |
|
binomcxp.a |
|- ( ph -> A e. RR+ ) |
2 |
|
binomcxp.b |
|- ( ph -> B e. RR ) |
3 |
|
binomcxp.lt |
|- ( ph -> ( abs ` B ) < ( abs ` A ) ) |
4 |
|
binomcxp.c |
|- ( ph -> C e. CC ) |
5 |
|
binomcxplem.f |
|- F = ( j e. NN0 |-> ( C _Cc j ) ) |
6 |
|
binomcxplem.s |
|- S = ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) |
7 |
|
binomcxplem.r |
|- R = sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) |
8 |
|
binomcxplem.e |
|- E = ( b e. CC |-> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) |
9 |
|
binomcxplem.d |
|- D = ( `' abs " ( 0 [,) R ) ) |
10 |
4
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> C e. CC ) |
11 |
|
simpr |
|- ( ( ph /\ j e. NN0 ) -> j e. NN0 ) |
12 |
10 11
|
bcccl |
|- ( ( ph /\ j e. NN0 ) -> ( C _Cc j ) e. CC ) |
13 |
12 5
|
fmptd |
|- ( ph -> F : NN0 --> CC ) |
14 |
13
|
adantr |
|- ( ( ph /\ J e. D ) -> F : NN0 --> CC ) |
15 |
9
|
eleq2i |
|- ( J e. D <-> J e. ( `' abs " ( 0 [,) R ) ) ) |
16 |
|
absf |
|- abs : CC --> RR |
17 |
|
ffn |
|- ( abs : CC --> RR -> abs Fn CC ) |
18 |
|
elpreima |
|- ( abs Fn CC -> ( J e. ( `' abs " ( 0 [,) R ) ) <-> ( J e. CC /\ ( abs ` J ) e. ( 0 [,) R ) ) ) ) |
19 |
16 17 18
|
mp2b |
|- ( J e. ( `' abs " ( 0 [,) R ) ) <-> ( J e. CC /\ ( abs ` J ) e. ( 0 [,) R ) ) ) |
20 |
15 19
|
bitri |
|- ( J e. D <-> ( J e. CC /\ ( abs ` J ) e. ( 0 [,) R ) ) ) |
21 |
20
|
simplbi |
|- ( J e. D -> J e. CC ) |
22 |
21
|
adantl |
|- ( ( ph /\ J e. D ) -> J e. CC ) |
23 |
20
|
simprbi |
|- ( J e. D -> ( abs ` J ) e. ( 0 [,) R ) ) |
24 |
|
0re |
|- 0 e. RR |
25 |
|
ssrab2 |
|- { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } C_ RR |
26 |
|
ressxr |
|- RR C_ RR* |
27 |
25 26
|
sstri |
|- { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } C_ RR* |
28 |
|
supxrcl |
|- ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } C_ RR* -> sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) e. RR* ) |
29 |
27 28
|
ax-mp |
|- sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) e. RR* |
30 |
7 29
|
eqeltri |
|- R e. RR* |
31 |
|
elico2 |
|- ( ( 0 e. RR /\ R e. RR* ) -> ( ( abs ` J ) e. ( 0 [,) R ) <-> ( ( abs ` J ) e. RR /\ 0 <_ ( abs ` J ) /\ ( abs ` J ) < R ) ) ) |
32 |
24 30 31
|
mp2an |
|- ( ( abs ` J ) e. ( 0 [,) R ) <-> ( ( abs ` J ) e. RR /\ 0 <_ ( abs ` J ) /\ ( abs ` J ) < R ) ) |
33 |
32
|
simp3bi |
|- ( ( abs ` J ) e. ( 0 [,) R ) -> ( abs ` J ) < R ) |
34 |
23 33
|
syl |
|- ( J e. D -> ( abs ` J ) < R ) |
35 |
34
|
adantl |
|- ( ( ph /\ J e. D ) -> ( abs ` J ) < R ) |
36 |
6 14 7 22 35
|
radcnvlt2 |
|- ( ( ph /\ J e. D ) -> seq 0 ( + , ( S ` J ) ) e. dom ~~> ) |
37 |
8
|
a1i |
|- ( ( ph /\ J e. CC ) -> E = ( b e. CC |-> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) ) |
38 |
|
simplr |
|- ( ( ( ( ph /\ J e. CC ) /\ b = J ) /\ k e. NN ) -> b = J ) |
39 |
38
|
oveq1d |
|- ( ( ( ( ph /\ J e. CC ) /\ b = J ) /\ k e. NN ) -> ( b ^ ( k - 1 ) ) = ( J ^ ( k - 1 ) ) ) |
40 |
39
|
oveq2d |
|- ( ( ( ( ph /\ J e. CC ) /\ b = J ) /\ k e. NN ) -> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) = ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) |
41 |
40
|
mpteq2dva |
|- ( ( ( ph /\ J e. CC ) /\ b = J ) -> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) = ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) ) |
42 |
|
simpr |
|- ( ( ph /\ J e. CC ) -> J e. CC ) |
43 |
|
nnex |
|- NN e. _V |
44 |
43
|
mptex |
|- ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) e. _V |
45 |
44
|
a1i |
|- ( ( ph /\ J e. CC ) -> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) e. _V ) |
46 |
37 41 42 45
|
fvmptd |
|- ( ( ph /\ J e. CC ) -> ( E ` J ) = ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) ) |
47 |
21 46
|
sylan2 |
|- ( ( ph /\ J e. D ) -> ( E ` J ) = ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) ) |
48 |
47
|
seqeq3d |
|- ( ( ph /\ J e. D ) -> seq 1 ( + , ( E ` J ) ) = seq 1 ( + , ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) ) ) |
49 |
|
eqid |
|- ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) = ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) |
50 |
6 7 49 14 22 35
|
dvradcnv2 |
|- ( ( ph /\ J e. D ) -> seq 1 ( + , ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) ) e. dom ~~> ) |
51 |
48 50
|
eqeltrd |
|- ( ( ph /\ J e. D ) -> seq 1 ( + , ( E ` J ) ) e. dom ~~> ) |
52 |
36 51
|
jca |
|- ( ( ph /\ J e. D ) -> ( seq 0 ( + , ( S ` J ) ) e. dom ~~> /\ seq 1 ( + , ( E ` J ) ) e. dom ~~> ) ) |