| Step | Hyp | Ref | Expression | 
						
							| 1 |  | binomcxp.a |  |-  ( ph -> A e. RR+ ) | 
						
							| 2 |  | binomcxp.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | binomcxp.lt |  |-  ( ph -> ( abs ` B ) < ( abs ` A ) ) | 
						
							| 4 |  | binomcxp.c |  |-  ( ph -> C e. CC ) | 
						
							| 5 |  | binomcxplem.f |  |-  F = ( j e. NN0 |-> ( C _Cc j ) ) | 
						
							| 6 |  | binomcxplem.s |  |-  S = ( b e. CC |-> ( k e. NN0 |-> ( ( F ` k ) x. ( b ^ k ) ) ) ) | 
						
							| 7 |  | binomcxplem.r |  |-  R = sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) | 
						
							| 8 |  | binomcxplem.e |  |-  E = ( b e. CC |-> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) | 
						
							| 9 |  | binomcxplem.d |  |-  D = ( `' abs " ( 0 [,) R ) ) | 
						
							| 10 | 4 | adantr |  |-  ( ( ph /\ j e. NN0 ) -> C e. CC ) | 
						
							| 11 |  | simpr |  |-  ( ( ph /\ j e. NN0 ) -> j e. NN0 ) | 
						
							| 12 | 10 11 | bcccl |  |-  ( ( ph /\ j e. NN0 ) -> ( C _Cc j ) e. CC ) | 
						
							| 13 | 12 5 | fmptd |  |-  ( ph -> F : NN0 --> CC ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ J e. D ) -> F : NN0 --> CC ) | 
						
							| 15 | 9 | eleq2i |  |-  ( J e. D <-> J e. ( `' abs " ( 0 [,) R ) ) ) | 
						
							| 16 |  | absf |  |-  abs : CC --> RR | 
						
							| 17 |  | ffn |  |-  ( abs : CC --> RR -> abs Fn CC ) | 
						
							| 18 |  | elpreima |  |-  ( abs Fn CC -> ( J e. ( `' abs " ( 0 [,) R ) ) <-> ( J e. CC /\ ( abs ` J ) e. ( 0 [,) R ) ) ) ) | 
						
							| 19 | 16 17 18 | mp2b |  |-  ( J e. ( `' abs " ( 0 [,) R ) ) <-> ( J e. CC /\ ( abs ` J ) e. ( 0 [,) R ) ) ) | 
						
							| 20 | 15 19 | bitri |  |-  ( J e. D <-> ( J e. CC /\ ( abs ` J ) e. ( 0 [,) R ) ) ) | 
						
							| 21 | 20 | simplbi |  |-  ( J e. D -> J e. CC ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ph /\ J e. D ) -> J e. CC ) | 
						
							| 23 | 20 | simprbi |  |-  ( J e. D -> ( abs ` J ) e. ( 0 [,) R ) ) | 
						
							| 24 |  | 0re |  |-  0 e. RR | 
						
							| 25 |  | ssrab2 |  |-  { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } C_ RR | 
						
							| 26 |  | ressxr |  |-  RR C_ RR* | 
						
							| 27 | 25 26 | sstri |  |-  { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } C_ RR* | 
						
							| 28 |  | supxrcl |  |-  ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } C_ RR* -> sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) e. RR* ) | 
						
							| 29 | 27 28 | ax-mp |  |-  sup ( { r e. RR | seq 0 ( + , ( S ` r ) ) e. dom ~~> } , RR* , < ) e. RR* | 
						
							| 30 | 7 29 | eqeltri |  |-  R e. RR* | 
						
							| 31 |  | elico2 |  |-  ( ( 0 e. RR /\ R e. RR* ) -> ( ( abs ` J ) e. ( 0 [,) R ) <-> ( ( abs ` J ) e. RR /\ 0 <_ ( abs ` J ) /\ ( abs ` J ) < R ) ) ) | 
						
							| 32 | 24 30 31 | mp2an |  |-  ( ( abs ` J ) e. ( 0 [,) R ) <-> ( ( abs ` J ) e. RR /\ 0 <_ ( abs ` J ) /\ ( abs ` J ) < R ) ) | 
						
							| 33 | 32 | simp3bi |  |-  ( ( abs ` J ) e. ( 0 [,) R ) -> ( abs ` J ) < R ) | 
						
							| 34 | 23 33 | syl |  |-  ( J e. D -> ( abs ` J ) < R ) | 
						
							| 35 | 34 | adantl |  |-  ( ( ph /\ J e. D ) -> ( abs ` J ) < R ) | 
						
							| 36 | 6 14 7 22 35 | radcnvlt2 |  |-  ( ( ph /\ J e. D ) -> seq 0 ( + , ( S ` J ) ) e. dom ~~> ) | 
						
							| 37 | 8 | a1i |  |-  ( ( ph /\ J e. CC ) -> E = ( b e. CC |-> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) ) ) | 
						
							| 38 |  | simplr |  |-  ( ( ( ( ph /\ J e. CC ) /\ b = J ) /\ k e. NN ) -> b = J ) | 
						
							| 39 | 38 | oveq1d |  |-  ( ( ( ( ph /\ J e. CC ) /\ b = J ) /\ k e. NN ) -> ( b ^ ( k - 1 ) ) = ( J ^ ( k - 1 ) ) ) | 
						
							| 40 | 39 | oveq2d |  |-  ( ( ( ( ph /\ J e. CC ) /\ b = J ) /\ k e. NN ) -> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) = ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) | 
						
							| 41 | 40 | mpteq2dva |  |-  ( ( ( ph /\ J e. CC ) /\ b = J ) -> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( b ^ ( k - 1 ) ) ) ) = ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) ) | 
						
							| 42 |  | simpr |  |-  ( ( ph /\ J e. CC ) -> J e. CC ) | 
						
							| 43 |  | nnex |  |-  NN e. _V | 
						
							| 44 | 43 | mptex |  |-  ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) e. _V | 
						
							| 45 | 44 | a1i |  |-  ( ( ph /\ J e. CC ) -> ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) e. _V ) | 
						
							| 46 | 37 41 42 45 | fvmptd |  |-  ( ( ph /\ J e. CC ) -> ( E ` J ) = ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) ) | 
						
							| 47 | 21 46 | sylan2 |  |-  ( ( ph /\ J e. D ) -> ( E ` J ) = ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) ) | 
						
							| 48 | 47 | seqeq3d |  |-  ( ( ph /\ J e. D ) -> seq 1 ( + , ( E ` J ) ) = seq 1 ( + , ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) ) ) | 
						
							| 49 |  | eqid |  |-  ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) = ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) | 
						
							| 50 | 6 7 49 14 22 35 | dvradcnv2 |  |-  ( ( ph /\ J e. D ) -> seq 1 ( + , ( k e. NN |-> ( ( k x. ( F ` k ) ) x. ( J ^ ( k - 1 ) ) ) ) ) e. dom ~~> ) | 
						
							| 51 | 48 50 | eqeltrd |  |-  ( ( ph /\ J e. D ) -> seq 1 ( + , ( E ` J ) ) e. dom ~~> ) | 
						
							| 52 | 36 51 | jca |  |-  ( ( ph /\ J e. D ) -> ( seq 0 ( + , ( S ` J ) ) e. dom ~~> /\ seq 1 ( + , ( E ` J ) ) e. dom ~~> ) ) |