| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isum1p.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
isum1p.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
isum1p.4 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
| 4 |
|
isum1p.5 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
| 5 |
|
isum1p.6 |
⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 6 |
|
eqid |
⊢ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) = ( ℤ≥ ‘ ( 𝑀 + 1 ) ) |
| 7 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 8 |
2 7
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 9 |
|
peano2uz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 11 |
10 1
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ 𝑍 ) |
| 12 |
1 6 11 3 4 5
|
isumsplit |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑀 + 1 ) − 1 ) ) 𝐴 + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) 𝐴 ) ) |
| 13 |
2
|
zcnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 14 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 15 |
|
pncan |
⊢ ( ( 𝑀 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
| 16 |
13 14 15
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑀 + 1 ) − 1 ) = 𝑀 ) |
| 17 |
16
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 ... ( ( 𝑀 + 1 ) − 1 ) ) = ( 𝑀 ... 𝑀 ) ) |
| 18 |
17
|
sumeq1d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑀 + 1 ) − 1 ) ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 ) |
| 19 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑀 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 20 |
19 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑀 ) → 𝑘 ∈ 𝑍 ) |
| 21 |
20 3
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
| 22 |
21
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( 𝐹 ‘ 𝑘 ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) 𝐴 ) |
| 23 |
|
fveq2 |
⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 24 |
23
|
eleq1d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝑀 ) ∈ ℂ ) ) |
| 25 |
3 4
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 26 |
25
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 27 |
8 1
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
| 28 |
24 26 27
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ ℂ ) |
| 29 |
23
|
fsum1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝐹 ‘ 𝑀 ) ∈ ℂ ) → Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 30 |
2 28 29
|
syl2anc |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... 𝑀 ) ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 31 |
18 22 30
|
3eqtr2d |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑀 + 1 ) − 1 ) ) 𝐴 = ( 𝐹 ‘ 𝑀 ) ) |
| 32 |
31
|
oveq1d |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 𝑀 ... ( ( 𝑀 + 1 ) − 1 ) ) 𝐴 + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) 𝐴 ) = ( ( 𝐹 ‘ 𝑀 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) 𝐴 ) ) |
| 33 |
12 32
|
eqtrd |
⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ( ( 𝐹 ‘ 𝑀 ) + Σ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) 𝐴 ) ) |