Metamath Proof Explorer


Theorem isum1p

Description: The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses isum1p.1 Z = M
isum1p.3 φ M
isum1p.4 φ k Z F k = A
isum1p.5 φ k Z A
isum1p.6 φ seq M + F dom
Assertion isum1p φ k Z A = F M + k M + 1 A

Proof

Step Hyp Ref Expression
1 isum1p.1 Z = M
2 isum1p.3 φ M
3 isum1p.4 φ k Z F k = A
4 isum1p.5 φ k Z A
5 isum1p.6 φ seq M + F dom
6 eqid M + 1 = M + 1
7 uzid M M M
8 2 7 syl φ M M
9 peano2uz M M M + 1 M
10 8 9 syl φ M + 1 M
11 10 1 eleqtrrdi φ M + 1 Z
12 1 6 11 3 4 5 isumsplit φ k Z A = k = M M + 1 - 1 A + k M + 1 A
13 2 zcnd φ M
14 ax-1cn 1
15 pncan M 1 M + 1 - 1 = M
16 13 14 15 sylancl φ M + 1 - 1 = M
17 16 oveq2d φ M M + 1 - 1 = M M
18 17 sumeq1d φ k = M M + 1 - 1 A = k = M M A
19 elfzuz k M M k M
20 19 1 eleqtrrdi k M M k Z
21 20 3 sylan2 φ k M M F k = A
22 21 sumeq2dv φ k = M M F k = k = M M A
23 fveq2 k = M F k = F M
24 23 eleq1d k = M F k F M
25 3 4 eqeltrd φ k Z F k
26 25 ralrimiva φ k Z F k
27 8 1 eleqtrrdi φ M Z
28 24 26 27 rspcdva φ F M
29 23 fsum1 M F M k = M M F k = F M
30 2 28 29 syl2anc φ k = M M F k = F M
31 18 22 30 3eqtr2d φ k = M M + 1 - 1 A = F M
32 31 oveq1d φ k = M M + 1 - 1 A + k M + 1 A = F M + k M + 1 A
33 12 32 eqtrd φ k Z A = F M + k M + 1 A