Metamath Proof Explorer


Theorem isum1p

Description: The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 24-Apr-2014)

Ref Expression
Hypotheses isum1p.1 Z=M
isum1p.3 φM
isum1p.4 φkZFk=A
isum1p.5 φkZA
isum1p.6 φseqM+Fdom
Assertion isum1p φkZA=FM+kM+1A

Proof

Step Hyp Ref Expression
1 isum1p.1 Z=M
2 isum1p.3 φM
3 isum1p.4 φkZFk=A
4 isum1p.5 φkZA
5 isum1p.6 φseqM+Fdom
6 eqid M+1=M+1
7 uzid MMM
8 2 7 syl φMM
9 peano2uz MMM+1M
10 8 9 syl φM+1M
11 10 1 eleqtrrdi φM+1Z
12 1 6 11 3 4 5 isumsplit φkZA=k=MM+1-1A+kM+1A
13 2 zcnd φM
14 ax-1cn 1
15 pncan M1M+1-1=M
16 13 14 15 sylancl φM+1-1=M
17 16 oveq2d φMM+1-1=MM
18 17 sumeq1d φk=MM+1-1A=k=MMA
19 elfzuz kMMkM
20 19 1 eleqtrrdi kMMkZ
21 20 3 sylan2 φkMMFk=A
22 21 sumeq2dv φk=MMFk=k=MMA
23 fveq2 k=MFk=FM
24 23 eleq1d k=MFkFM
25 3 4 eqeltrd φkZFk
26 25 ralrimiva φkZFk
27 8 1 eleqtrrdi φMZ
28 24 26 27 rspcdva φFM
29 23 fsum1 MFMk=MMFk=FM
30 2 28 29 syl2anc φk=MMFk=FM
31 18 22 30 3eqtr2d φk=MM+1-1A=FM
32 31 oveq1d φk=MM+1-1A+kM+1A=FM+kM+1A
33 12 32 eqtrd φkZA=FM+kM+1A