Description: The infinite sum of a converging infinite series equals the first term plus the infinite sum of the rest of it. (Contributed by NM, 2-Jan-2006) (Revised by Mario Carneiro, 24-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isum1p.1 | |
|
isum1p.3 | |
||
isum1p.4 | |
||
isum1p.5 | |
||
isum1p.6 | |
||
Assertion | isum1p | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isum1p.1 | |
|
2 | isum1p.3 | |
|
3 | isum1p.4 | |
|
4 | isum1p.5 | |
|
5 | isum1p.6 | |
|
6 | eqid | |
|
7 | uzid | |
|
8 | 2 7 | syl | |
9 | peano2uz | |
|
10 | 8 9 | syl | |
11 | 10 1 | eleqtrrdi | |
12 | 1 6 11 3 4 5 | isumsplit | |
13 | 2 | zcnd | |
14 | ax-1cn | |
|
15 | pncan | |
|
16 | 13 14 15 | sylancl | |
17 | 16 | oveq2d | |
18 | 17 | sumeq1d | |
19 | elfzuz | |
|
20 | 19 1 | eleqtrrdi | |
21 | 20 3 | sylan2 | |
22 | 21 | sumeq2dv | |
23 | fveq2 | |
|
24 | 23 | eleq1d | |
25 | 3 4 | eqeltrd | |
26 | 25 | ralrimiva | |
27 | 8 1 | eleqtrrdi | |
28 | 24 26 27 | rspcdva | |
29 | 23 | fsum1 | |
30 | 2 28 29 | syl2anc | |
31 | 18 22 30 | 3eqtr2d | |
32 | 31 | oveq1d | |
33 | 12 32 | eqtrd | |