Metamath Proof Explorer


Theorem isumadd

Description: Addition of infinite sums. (Contributed by Mario Carneiro, 18-Aug-2013) (Revised by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypotheses isumadd.1 Z=M
isumadd.2 φM
isumadd.3 φkZFk=A
isumadd.4 φkZA
isumadd.5 φkZGk=B
isumadd.6 φkZB
isumadd.7 φseqM+Fdom
isumadd.8 φseqM+Gdom
Assertion isumadd φkZA+B=kZA+kZB

Proof

Step Hyp Ref Expression
1 isumadd.1 Z=M
2 isumadd.2 φM
3 isumadd.3 φkZFk=A
4 isumadd.4 φkZA
5 isumadd.5 φkZGk=B
6 isumadd.6 φkZB
7 isumadd.7 φseqM+Fdom
8 isumadd.8 φseqM+Gdom
9 fveq2 m=kFm=Fk
10 fveq2 m=kGm=Gk
11 9 10 oveq12d m=kFm+Gm=Fk+Gk
12 eqid mZFm+Gm=mZFm+Gm
13 ovex Fk+GkV
14 11 12 13 fvmpt kZmZFm+Gmk=Fk+Gk
15 14 adantl φkZmZFm+Gmk=Fk+Gk
16 3 5 oveq12d φkZFk+Gk=A+B
17 15 16 eqtrd φkZmZFm+Gmk=A+B
18 4 6 addcld φkZA+B
19 1 2 3 4 7 isumclim2 φseqM+FkZA
20 seqex seqM+mZFm+GmV
21 20 a1i φseqM+mZFm+GmV
22 1 2 5 6 8 isumclim2 φseqM+GkZB
23 3 4 eqeltrd φkZFk
24 1 2 23 serf φseqM+F:Z
25 24 ffvelcdmda φjZseqM+Fj
26 5 6 eqeltrd φkZGk
27 1 2 26 serf φseqM+G:Z
28 27 ffvelcdmda φjZseqM+Gj
29 simpr φjZjZ
30 29 1 eleqtrdi φjZjM
31 simpll φjZkMjφ
32 elfzuz kMjkM
33 32 1 eleqtrrdi kMjkZ
34 33 adantl φjZkMjkZ
35 31 34 23 syl2anc φjZkMjFk
36 31 34 26 syl2anc φjZkMjGk
37 34 14 syl φjZkMjmZFm+Gmk=Fk+Gk
38 30 35 36 37 seradd φjZseqM+mZFm+Gmj=seqM+Fj+seqM+Gj
39 1 2 19 21 22 25 28 38 climadd φseqM+mZFm+GmkZA+kZB
40 1 2 17 18 39 isumclim φkZA+B=kZA+kZB