| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumsplit.1 |
|
| 2 |
|
sumsplit.2 |
|
| 3 |
|
sumsplit.3 |
|
| 4 |
|
sumsplit.4 |
|
| 5 |
|
sumsplit.5 |
|
| 6 |
|
sumsplit.6 |
|
| 7 |
|
sumsplit.7 |
|
| 8 |
|
sumsplit.8 |
|
| 9 |
|
sumsplit.9 |
|
| 10 |
7
|
ralrimiva |
|
| 11 |
1
|
eqimssi |
|
| 12 |
11
|
a1i |
|
| 13 |
12
|
orcd |
|
| 14 |
|
sumss2 |
|
| 15 |
4 10 13 14
|
syl21anc |
|
| 16 |
|
iftrue |
|
| 17 |
16
|
adantl |
|
| 18 |
|
elun1 |
|
| 19 |
18 7
|
sylan2 |
|
| 20 |
17 19
|
eqeltrd |
|
| 21 |
|
iffalse |
|
| 22 |
|
0cn |
|
| 23 |
21 22
|
eqeltrdi |
|
| 24 |
23
|
adantl |
|
| 25 |
20 24
|
pm2.61dan |
|
| 26 |
25
|
adantr |
|
| 27 |
|
iftrue |
|
| 28 |
27
|
adantl |
|
| 29 |
|
elun2 |
|
| 30 |
29 7
|
sylan2 |
|
| 31 |
28 30
|
eqeltrd |
|
| 32 |
|
iffalse |
|
| 33 |
32 22
|
eqeltrdi |
|
| 34 |
33
|
adantl |
|
| 35 |
31 34
|
pm2.61dan |
|
| 36 |
35
|
adantr |
|
| 37 |
1 2 5 26 6 36 8 9
|
isumadd |
|
| 38 |
19
|
addridd |
|
| 39 |
|
noel |
|
| 40 |
3
|
eleq2d |
|
| 41 |
|
elin |
|
| 42 |
40 41
|
bitr3di |
|
| 43 |
39 42
|
mtbii |
|
| 44 |
|
imnan |
|
| 45 |
43 44
|
sylibr |
|
| 46 |
45
|
imp |
|
| 47 |
46 32
|
syl |
|
| 48 |
17 47
|
oveq12d |
|
| 49 |
|
iftrue |
|
| 50 |
18 49
|
syl |
|
| 51 |
50
|
adantl |
|
| 52 |
38 48 51
|
3eqtr4rd |
|
| 53 |
35
|
addlidd |
|
| 54 |
53
|
adantr |
|
| 55 |
21
|
adantl |
|
| 56 |
55
|
oveq1d |
|
| 57 |
|
elun |
|
| 58 |
|
biorf |
|
| 59 |
57 58
|
bitr4id |
|
| 60 |
59
|
adantl |
|
| 61 |
60
|
ifbid |
|
| 62 |
54 56 61
|
3eqtr4rd |
|
| 63 |
52 62
|
pm2.61dan |
|
| 64 |
63
|
sumeq2sdv |
|
| 65 |
4
|
unssad |
|
| 66 |
19
|
ralrimiva |
|
| 67 |
|
sumss2 |
|
| 68 |
65 66 13 67
|
syl21anc |
|
| 69 |
4
|
unssbd |
|
| 70 |
30
|
ralrimiva |
|
| 71 |
|
sumss2 |
|
| 72 |
69 70 13 71
|
syl21anc |
|
| 73 |
68 72
|
oveq12d |
|
| 74 |
37 64 73
|
3eqtr4rd |
|
| 75 |
15 74
|
eqtr4d |
|