Step |
Hyp |
Ref |
Expression |
1 |
|
fvoveq1 |
|- ( n = N -> ( |_ ` ( n / ( 2 ^ m ) ) ) = ( |_ ` ( N / ( 2 ^ m ) ) ) ) |
2 |
1
|
breq2d |
|- ( n = N -> ( 2 || ( |_ ` ( n / ( 2 ^ m ) ) ) <-> 2 || ( |_ ` ( N / ( 2 ^ m ) ) ) ) ) |
3 |
2
|
notbid |
|- ( n = N -> ( -. 2 || ( |_ ` ( n / ( 2 ^ m ) ) ) <-> -. 2 || ( |_ ` ( N / ( 2 ^ m ) ) ) ) ) |
4 |
3
|
rabbidv |
|- ( n = N -> { m e. NN0 | -. 2 || ( |_ ` ( n / ( 2 ^ m ) ) ) } = { m e. NN0 | -. 2 || ( |_ ` ( N / ( 2 ^ m ) ) ) } ) |
5 |
|
df-bits |
|- bits = ( n e. ZZ |-> { m e. NN0 | -. 2 || ( |_ ` ( n / ( 2 ^ m ) ) ) } ) |
6 |
|
nn0ex |
|- NN0 e. _V |
7 |
6
|
rabex |
|- { m e. NN0 | -. 2 || ( |_ ` ( N / ( 2 ^ m ) ) ) } e. _V |
8 |
4 5 7
|
fvmpt |
|- ( N e. ZZ -> ( bits ` N ) = { m e. NN0 | -. 2 || ( |_ ` ( N / ( 2 ^ m ) ) ) } ) |