Step |
Hyp |
Ref |
Expression |
1 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑁 → ( ⌊ ‘ ( 𝑛 / ( 2 ↑ 𝑚 ) ) ) = ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝑚 ) ) ) ) |
2 |
1
|
breq2d |
⊢ ( 𝑛 = 𝑁 → ( 2 ∥ ( ⌊ ‘ ( 𝑛 / ( 2 ↑ 𝑚 ) ) ) ↔ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝑚 ) ) ) ) ) |
3 |
2
|
notbid |
⊢ ( 𝑛 = 𝑁 → ( ¬ 2 ∥ ( ⌊ ‘ ( 𝑛 / ( 2 ↑ 𝑚 ) ) ) ↔ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝑚 ) ) ) ) ) |
4 |
3
|
rabbidv |
⊢ ( 𝑛 = 𝑁 → { 𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ ( ⌊ ‘ ( 𝑛 / ( 2 ↑ 𝑚 ) ) ) } = { 𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝑚 ) ) ) } ) |
5 |
|
df-bits |
⊢ bits = ( 𝑛 ∈ ℤ ↦ { 𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ ( ⌊ ‘ ( 𝑛 / ( 2 ↑ 𝑚 ) ) ) } ) |
6 |
|
nn0ex |
⊢ ℕ0 ∈ V |
7 |
6
|
rabex |
⊢ { 𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝑚 ) ) ) } ∈ V |
8 |
4 5 7
|
fvmpt |
⊢ ( 𝑁 ∈ ℤ → ( bits ‘ 𝑁 ) = { 𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ ( ⌊ ‘ ( 𝑁 / ( 2 ↑ 𝑚 ) ) ) } ) |