Description: Biconditional version of hbae . (Contributed by BJ, 6-Oct-2018) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-hbaeb | |- ( A. x x = y <-> A. z A. x x = y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-hbaeb2 | |- ( A. x x = y <-> A. x A. z x = y ) |
|
| 2 | alcom | |- ( A. x A. z x = y <-> A. z A. x x = y ) |
|
| 3 | 1 2 | bitri | |- ( A. x x = y <-> A. z A. x x = y ) |