Description: Biconditional version of hbae . (Contributed by BJ, 6-Oct-2018) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-hbaeb | |- ( A. x x = y <-> A. z A. x x = y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-hbaeb2 | |- ( A. x x = y <-> A. x A. z x = y ) |
|
2 | alcom | |- ( A. x A. z x = y <-> A. z A. x x = y ) |
|
3 | 1 2 | bitri | |- ( A. x x = y <-> A. z A. x x = y ) |