Metamath Proof Explorer


Theorem bj-hbaeb2

Description: Biconditional version of a form of hbae with commuted quantifiers, not requiring ax-11 . (Contributed by BJ, 12-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-hbaeb2
|- ( A. x x = y <-> A. x A. z x = y )

Proof

Step Hyp Ref Expression
1 sp
 |-  ( A. x x = y -> x = y )
2 axc9
 |-  ( -. A. z z = x -> ( -. A. z z = y -> ( x = y -> A. z x = y ) ) )
3 1 2 syl7
 |-  ( -. A. z z = x -> ( -. A. z z = y -> ( A. x x = y -> A. z x = y ) ) )
4 axc11r
 |-  ( A. z z = x -> ( A. x x = y -> A. z x = y ) )
5 axc11
 |-  ( A. x x = y -> ( A. x x = y -> A. y x = y ) )
6 5 pm2.43i
 |-  ( A. x x = y -> A. y x = y )
7 axc11r
 |-  ( A. z z = y -> ( A. y x = y -> A. z x = y ) )
8 6 7 syl5
 |-  ( A. z z = y -> ( A. x x = y -> A. z x = y ) )
9 3 4 8 pm2.61ii
 |-  ( A. x x = y -> A. z x = y )
10 9 axc4i
 |-  ( A. x x = y -> A. x A. z x = y )
11 sp
 |-  ( A. z x = y -> x = y )
12 11 alimi
 |-  ( A. x A. z x = y -> A. x x = y )
13 10 12 impbii
 |-  ( A. x x = y <-> A. x A. z x = y )