Metamath Proof Explorer


Theorem bj-hbaeb2

Description: Biconditional version of a form of hbae with commuted quantifiers, not requiring ax-11 . (Contributed by BJ, 12-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-hbaeb2 ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥𝑧 𝑥 = 𝑦 )

Proof

Step Hyp Ref Expression
1 sp ( ∀ 𝑥 𝑥 = 𝑦𝑥 = 𝑦 )
2 axc9 ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) )
3 1 2 syl7 ( ¬ ∀ 𝑧 𝑧 = 𝑥 → ( ¬ ∀ 𝑧 𝑧 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) ) )
4 axc11r ( ∀ 𝑧 𝑧 = 𝑥 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) )
5 axc11 ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 𝑥 = 𝑦 ) )
6 5 pm2.43i ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 𝑥 = 𝑦 )
7 axc11r ( ∀ 𝑧 𝑧 = 𝑦 → ( ∀ 𝑦 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) )
8 6 7 syl5 ( ∀ 𝑧 𝑧 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 ) )
9 3 4 8 pm2.61ii ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 𝑥 = 𝑦 )
10 9 axc4i ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑥𝑧 𝑥 = 𝑦 )
11 sp ( ∀ 𝑧 𝑥 = 𝑦𝑥 = 𝑦 )
12 11 alimi ( ∀ 𝑥𝑧 𝑥 = 𝑦 → ∀ 𝑥 𝑥 = 𝑦 )
13 10 12 impbii ( ∀ 𝑥 𝑥 = 𝑦 ↔ ∀ 𝑥𝑧 𝑥 = 𝑦 )