Metamath Proof Explorer


Theorem bj-hbntbi

Description: Strengthening hbnt by replacing its consequent with a biconditional. See also hbntg and hbntal . (Contributed by BJ, 20-Oct-2019) Proved from bj-19.9htbi . (Proof modification is discouraged.)

Ref Expression
Assertion bj-hbntbi
|- ( A. x ( ph -> A. x ph ) -> ( -. ph <-> A. x -. ph ) )

Proof

Step Hyp Ref Expression
1 bj-19.9htbi
 |-  ( A. x ( ph -> A. x ph ) -> ( E. x ph <-> ph ) )
2 1 bicomd
 |-  ( A. x ( ph -> A. x ph ) -> ( ph <-> E. x ph ) )
3 2 notbid
 |-  ( A. x ( ph -> A. x ph ) -> ( -. ph <-> -. E. x ph ) )
4 alnex
 |-  ( A. x -. ph <-> -. E. x ph )
5 3 4 bitr4di
 |-  ( A. x ( ph -> A. x ph ) -> ( -. ph <-> A. x -. ph ) )