Description: Strengthening hbnt by replacing its consequent with a biconditional. See also hbntg and hbntal . (Contributed by BJ, 20-Oct-2019) Proved from bj-19.9htbi . (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-hbntbi | |- ( A. x ( ph -> A. x ph ) -> ( -. ph <-> A. x -. ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-19.9htbi | |- ( A. x ( ph -> A. x ph ) -> ( E. x ph <-> ph ) ) |
|
2 | 1 | bicomd | |- ( A. x ( ph -> A. x ph ) -> ( ph <-> E. x ph ) ) |
3 | 2 | notbid | |- ( A. x ( ph -> A. x ph ) -> ( -. ph <-> -. E. x ph ) ) |
4 | alnex | |- ( A. x -. ph <-> -. E. x ph ) |
|
5 | 3 4 | bitr4di | |- ( A. x ( ph -> A. x ph ) -> ( -. ph <-> A. x -. ph ) ) |