Description: Strengthening hbnt by replacing its consequent with a biconditional. See also hbntg and hbntal . (Contributed by BJ, 20-Oct-2019) Proved from bj-19.9htbi . (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-hbntbi | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ¬ 𝜑 ↔ ∀ 𝑥 ¬ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-19.9htbi | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ∃ 𝑥 𝜑 ↔ 𝜑 ) ) | |
| 2 | 1 | bicomd | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( 𝜑 ↔ ∃ 𝑥 𝜑 ) ) |
| 3 | 2 | notbid | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) ) |
| 4 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) | |
| 5 | 3 4 | bitr4di | ⊢ ( ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) → ( ¬ 𝜑 ↔ ∀ 𝑥 ¬ 𝜑 ) ) |