Metamath Proof Explorer


Theorem bj-hbntbi

Description: Strengthening hbnt by replacing its consequent with a biconditional. See also hbntg and hbntal . (Contributed by BJ, 20-Oct-2019) Proved from bj-19.9htbi . (Proof modification is discouraged.)

Ref Expression
Assertion bj-hbntbi x φ x φ ¬ φ x ¬ φ

Proof

Step Hyp Ref Expression
1 bj-19.9htbi x φ x φ x φ φ
2 1 bicomd x φ x φ φ x φ
3 2 notbid x φ x φ ¬ φ ¬ x φ
4 alnex x ¬ φ ¬ x φ
5 3 4 bitr4di x φ x φ ¬ φ x ¬ φ