Metamath Proof Explorer


Theorem bj-hbxfrbi

Description: Closed form of hbxfrbi . Note: it is less important than nfbiit . The antecedent is in the "strong necessity" modality of modal logic (see also bj-nnftht ) in order not to require sp (modal T). See bj-hbyfrbi for its version with existential quantifiers. (Contributed by BJ, 6-May-2019)

Ref Expression
Assertion bj-hbxfrbi
|- ( ( ( ph <-> ps ) /\ A. x ( ph <-> ps ) ) -> ( ( ph -> A. x ph ) <-> ( ps -> A. x ps ) ) )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( ( ph <-> ps ) /\ A. x ( ph <-> ps ) ) -> ( ph <-> ps ) )
2 albi
 |-  ( A. x ( ph <-> ps ) -> ( A. x ph <-> A. x ps ) )
3 2 adantl
 |-  ( ( ( ph <-> ps ) /\ A. x ( ph <-> ps ) ) -> ( A. x ph <-> A. x ps ) )
4 1 3 imbi12d
 |-  ( ( ( ph <-> ps ) /\ A. x ( ph <-> ps ) ) -> ( ( ph -> A. x ph ) <-> ( ps -> A. x ps ) ) )