Description: Closed form of hbxfrbi . Note: it is less important than nfbiit . The antecedent is in the "strong necessity" modality of modal logic (see also bj-nnftht ) in order not to require sp (modal T). See bj-hbyfrbi for its version with existential quantifiers. (Contributed by BJ, 6-May-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-hbxfrbi | |- ( ( ( ph <-> ps ) /\ A. x ( ph <-> ps ) ) -> ( ( ph -> A. x ph ) <-> ( ps -> A. x ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |- ( ( ( ph <-> ps ) /\ A. x ( ph <-> ps ) ) -> ( ph <-> ps ) ) |
|
2 | albi | |- ( A. x ( ph <-> ps ) -> ( A. x ph <-> A. x ps ) ) |
|
3 | 2 | adantl | |- ( ( ( ph <-> ps ) /\ A. x ( ph <-> ps ) ) -> ( A. x ph <-> A. x ps ) ) |
4 | 1 3 | imbi12d | |- ( ( ( ph <-> ps ) /\ A. x ( ph <-> ps ) ) -> ( ( ph -> A. x ph ) <-> ( ps -> A. x ps ) ) ) |