Metamath Proof Explorer


Theorem bj-restsn0

Description: An elementwise intersection on the singleton on the empty set is the singleton on the empty set. Special case of bj-restsn and bj-restsnss2 . TODO: this is restsn . (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restsn0
|- ( A e. V -> ( { (/) } |`t A ) = { (/) } )

Proof

Step Hyp Ref Expression
1 0ss
 |-  (/) C_ A
2 bj-restsnss2
 |-  ( ( A e. V /\ (/) C_ A ) -> ( { (/) } |`t A ) = { (/) } )
3 1 2 mpan2
 |-  ( A e. V -> ( { (/) } |`t A ) = { (/) } )