| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfss2 |  |-  ( Y C_ A <-> ( Y i^i A ) = Y ) | 
						
							| 2 |  | sneq |  |-  ( ( Y i^i A ) = Y -> { ( Y i^i A ) } = { Y } ) | 
						
							| 3 | 1 2 | sylbi |  |-  ( Y C_ A -> { ( Y i^i A ) } = { Y } ) | 
						
							| 4 |  | ssexg |  |-  ( ( Y C_ A /\ A e. V ) -> Y e. _V ) | 
						
							| 5 | 4 | ancoms |  |-  ( ( A e. V /\ Y C_ A ) -> Y e. _V ) | 
						
							| 6 |  | bj-restsn |  |-  ( ( Y e. _V /\ A e. V ) -> ( { Y } |`t A ) = { ( Y i^i A ) } ) | 
						
							| 7 | 6 | ancoms |  |-  ( ( A e. V /\ Y e. _V ) -> ( { Y } |`t A ) = { ( Y i^i A ) } ) | 
						
							| 8 | 5 7 | syldan |  |-  ( ( A e. V /\ Y C_ A ) -> ( { Y } |`t A ) = { ( Y i^i A ) } ) | 
						
							| 9 |  | eqeq2 |  |-  ( { ( Y i^i A ) } = { Y } -> ( ( { Y } |`t A ) = { ( Y i^i A ) } <-> ( { Y } |`t A ) = { Y } ) ) | 
						
							| 10 | 9 | biimpa |  |-  ( ( { ( Y i^i A ) } = { Y } /\ ( { Y } |`t A ) = { ( Y i^i A ) } ) -> ( { Y } |`t A ) = { Y } ) | 
						
							| 11 | 3 8 10 | syl2an2 |  |-  ( ( A e. V /\ Y C_ A ) -> ( { Y } |`t A ) = { Y } ) |