Metamath Proof Explorer


Theorem bj-restsn

Description: An elementwise intersection on the singleton on a set is the singleton on the intersection by that set. Generalization of bj-restsn0 and bj-restsnid . (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restsn
|- ( ( Y e. V /\ A e. W ) -> ( { Y } |`t A ) = { ( Y i^i A ) } )

Proof

Step Hyp Ref Expression
1 snex
 |-  { Y } e. _V
2 elrest
 |-  ( ( { Y } e. _V /\ A e. W ) -> ( x e. ( { Y } |`t A ) <-> E. y e. { Y } x = ( y i^i A ) ) )
3 1 2 mpan
 |-  ( A e. W -> ( x e. ( { Y } |`t A ) <-> E. y e. { Y } x = ( y i^i A ) ) )
4 velsn
 |-  ( x e. { ( y i^i A ) } <-> x = ( y i^i A ) )
5 ineq1
 |-  ( y = Y -> ( y i^i A ) = ( Y i^i A ) )
6 5 sneqd
 |-  ( y = Y -> { ( y i^i A ) } = { ( Y i^i A ) } )
7 6 eleq2d
 |-  ( y = Y -> ( x e. { ( y i^i A ) } <-> x e. { ( Y i^i A ) } ) )
8 4 7 bitr3id
 |-  ( y = Y -> ( x = ( y i^i A ) <-> x e. { ( Y i^i A ) } ) )
9 8 rexsng
 |-  ( Y e. V -> ( E. y e. { Y } x = ( y i^i A ) <-> x e. { ( Y i^i A ) } ) )
10 3 9 sylan9bbr
 |-  ( ( Y e. V /\ A e. W ) -> ( x e. ( { Y } |`t A ) <-> x e. { ( Y i^i A ) } ) )
11 10 eqrdv
 |-  ( ( Y e. V /\ A e. W ) -> ( { Y } |`t A ) = { ( Y i^i A ) } )