| Step | Hyp | Ref | Expression | 
						
							| 1 |  | snex | ⊢ { 𝑌 }  ∈  V | 
						
							| 2 |  | elrest | ⊢ ( ( { 𝑌 }  ∈  V  ∧  𝐴  ∈  𝑊 )  →  ( 𝑥  ∈  ( { 𝑌 }  ↾t  𝐴 )  ↔  ∃ 𝑦  ∈  { 𝑌 } 𝑥  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 3 | 1 2 | mpan | ⊢ ( 𝐴  ∈  𝑊  →  ( 𝑥  ∈  ( { 𝑌 }  ↾t  𝐴 )  ↔  ∃ 𝑦  ∈  { 𝑌 } 𝑥  =  ( 𝑦  ∩  𝐴 ) ) ) | 
						
							| 4 |  | velsn | ⊢ ( 𝑥  ∈  { ( 𝑦  ∩  𝐴 ) }  ↔  𝑥  =  ( 𝑦  ∩  𝐴 ) ) | 
						
							| 5 |  | ineq1 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑦  ∩  𝐴 )  =  ( 𝑌  ∩  𝐴 ) ) | 
						
							| 6 | 5 | sneqd | ⊢ ( 𝑦  =  𝑌  →  { ( 𝑦  ∩  𝐴 ) }  =  { ( 𝑌  ∩  𝐴 ) } ) | 
						
							| 7 | 6 | eleq2d | ⊢ ( 𝑦  =  𝑌  →  ( 𝑥  ∈  { ( 𝑦  ∩  𝐴 ) }  ↔  𝑥  ∈  { ( 𝑌  ∩  𝐴 ) } ) ) | 
						
							| 8 | 4 7 | bitr3id | ⊢ ( 𝑦  =  𝑌  →  ( 𝑥  =  ( 𝑦  ∩  𝐴 )  ↔  𝑥  ∈  { ( 𝑌  ∩  𝐴 ) } ) ) | 
						
							| 9 | 8 | rexsng | ⊢ ( 𝑌  ∈  𝑉  →  ( ∃ 𝑦  ∈  { 𝑌 } 𝑥  =  ( 𝑦  ∩  𝐴 )  ↔  𝑥  ∈  { ( 𝑌  ∩  𝐴 ) } ) ) | 
						
							| 10 | 3 9 | sylan9bbr | ⊢ ( ( 𝑌  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( 𝑥  ∈  ( { 𝑌 }  ↾t  𝐴 )  ↔  𝑥  ∈  { ( 𝑌  ∩  𝐴 ) } ) ) | 
						
							| 11 | 10 | eqrdv | ⊢ ( ( 𝑌  ∈  𝑉  ∧  𝐴  ∈  𝑊 )  →  ( { 𝑌 }  ↾t  𝐴 )  =  { ( 𝑌  ∩  𝐴 ) } ) |