Metamath Proof Explorer


Theorem bj-restsnid

Description: The elementwise intersection on the singleton on a class by that class is the singleton on that class. Special case of bj-restsn and bj-restsnss . (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restsnid ( { 𝐴 } ↾t 𝐴 ) = { 𝐴 }

Proof

Step Hyp Ref Expression
1 ssid 𝐴𝐴
2 bj-restsnss ( ( 𝐴 ∈ V ∧ 𝐴𝐴 ) → ( { 𝐴 } ↾t 𝐴 ) = { 𝐴 } )
3 1 2 mpan2 ( 𝐴 ∈ V → ( { 𝐴 } ↾t 𝐴 ) = { 𝐴 } )
4 df-rest t = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ran ( 𝑧𝑥 ↦ ( 𝑧𝑦 ) ) )
5 4 reldmmpo Rel dom ↾t
6 5 ovprc2 ( ¬ 𝐴 ∈ V → ( { 𝐴 } ↾t 𝐴 ) = ∅ )
7 snprc ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ )
8 7 biimpi ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ )
9 6 8 eqtr4d ( ¬ 𝐴 ∈ V → ( { 𝐴 } ↾t 𝐴 ) = { 𝐴 } )
10 3 9 pm2.61i ( { 𝐴 } ↾t 𝐴 ) = { 𝐴 }