Description: The elementwise intersection on the singleton on a class by that class is the singleton on that class. Special case of bj-restsn and bj-restsnss . (Contributed by BJ, 27-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-restsnid | ⊢ ( { 𝐴 } ↾t 𝐴 ) = { 𝐴 } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 2 | bj-restsnss | ⊢ ( ( 𝐴 ∈ V ∧ 𝐴 ⊆ 𝐴 ) → ( { 𝐴 } ↾t 𝐴 ) = { 𝐴 } ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ V → ( { 𝐴 } ↾t 𝐴 ) = { 𝐴 } ) | 
| 4 | df-rest | ⊢ ↾t = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ran ( 𝑧 ∈ 𝑥 ↦ ( 𝑧 ∩ 𝑦 ) ) ) | |
| 5 | 4 | reldmmpo | ⊢ Rel dom ↾t | 
| 6 | 5 | ovprc2 | ⊢ ( ¬ 𝐴 ∈ V → ( { 𝐴 } ↾t 𝐴 ) = ∅ ) | 
| 7 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 8 | 7 | biimpi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) | 
| 9 | 6 8 | eqtr4d | ⊢ ( ¬ 𝐴 ∈ V → ( { 𝐴 } ↾t 𝐴 ) = { 𝐴 } ) | 
| 10 | 3 9 | pm2.61i | ⊢ ( { 𝐴 } ↾t 𝐴 ) = { 𝐴 } |