| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 2 |  | elrest | ⊢ ( ( 𝑋  ∈  𝑉  ∧  ∅  ∈  V )  →  ( 𝑥  ∈  ( 𝑋  ↾t  ∅ )  ↔  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦  ∩  ∅ ) ) ) | 
						
							| 3 | 1 2 | mpan2 | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑥  ∈  ( 𝑋  ↾t  ∅ )  ↔  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦  ∩  ∅ ) ) ) | 
						
							| 4 |  | in0 | ⊢ ( 𝑦  ∩  ∅ )  =  ∅ | 
						
							| 5 | 4 | eqeq2i | ⊢ ( 𝑥  =  ( 𝑦  ∩  ∅ )  ↔  𝑥  =  ∅ ) | 
						
							| 6 | 5 | rexbii | ⊢ ( ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦  ∩  ∅ )  ↔  ∃ 𝑦  ∈  𝑋 𝑥  =  ∅ ) | 
						
							| 7 |  | df-rex | ⊢ ( ∃ 𝑦  ∈  𝑋 𝑥  =  ∅  ↔  ∃ 𝑦 ( 𝑦  ∈  𝑋  ∧  𝑥  =  ∅ ) ) | 
						
							| 8 |  | 19.41v | ⊢ ( ∃ 𝑦 ( 𝑦  ∈  𝑋  ∧  𝑥  =  ∅ )  ↔  ( ∃ 𝑦 𝑦  ∈  𝑋  ∧  𝑥  =  ∅ ) ) | 
						
							| 9 |  | n0 | ⊢ ( 𝑋  ≠  ∅  ↔  ∃ 𝑦 𝑦  ∈  𝑋 ) | 
						
							| 10 | 9 | bicomi | ⊢ ( ∃ 𝑦 𝑦  ∈  𝑋  ↔  𝑋  ≠  ∅ ) | 
						
							| 11 | 10 | anbi1i | ⊢ ( ( ∃ 𝑦 𝑦  ∈  𝑋  ∧  𝑥  =  ∅ )  ↔  ( 𝑋  ≠  ∅  ∧  𝑥  =  ∅ ) ) | 
						
							| 12 | 8 11 | bitri | ⊢ ( ∃ 𝑦 ( 𝑦  ∈  𝑋  ∧  𝑥  =  ∅ )  ↔  ( 𝑋  ≠  ∅  ∧  𝑥  =  ∅ ) ) | 
						
							| 13 | 7 12 | bitri | ⊢ ( ∃ 𝑦  ∈  𝑋 𝑥  =  ∅  ↔  ( 𝑋  ≠  ∅  ∧  𝑥  =  ∅ ) ) | 
						
							| 14 | 6 13 | bitri | ⊢ ( ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦  ∩  ∅ )  ↔  ( 𝑋  ≠  ∅  ∧  𝑥  =  ∅ ) ) | 
						
							| 15 | 14 | baib | ⊢ ( 𝑋  ≠  ∅  →  ( ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦  ∩  ∅ )  ↔  𝑥  =  ∅ ) ) | 
						
							| 16 | 3 15 | sylan9bb | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑋  ≠  ∅ )  →  ( 𝑥  ∈  ( 𝑋  ↾t  ∅ )  ↔  𝑥  =  ∅ ) ) | 
						
							| 17 |  | velsn | ⊢ ( 𝑥  ∈  { ∅ }  ↔  𝑥  =  ∅ ) | 
						
							| 18 | 16 17 | bitr4di | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑋  ≠  ∅ )  →  ( 𝑥  ∈  ( 𝑋  ↾t  ∅ )  ↔  𝑥  ∈  { ∅ } ) ) | 
						
							| 19 | 18 | eqrdv | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑋  ≠  ∅ )  →  ( 𝑋  ↾t  ∅ )  =  { ∅ } ) | 
						
							| 20 | 19 | ex | ⊢ ( 𝑋  ∈  𝑉  →  ( 𝑋  ≠  ∅  →  ( 𝑋  ↾t  ∅ )  =  { ∅ } ) ) |