| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ex |
⊢ ∅ ∈ V |
| 2 |
|
elrest |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∅ ∈ V ) → ( 𝑥 ∈ ( 𝑋 ↾t ∅ ) ↔ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ ∅ ) ) ) |
| 3 |
1 2
|
mpan2 |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑥 ∈ ( 𝑋 ↾t ∅ ) ↔ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ ∅ ) ) ) |
| 4 |
|
in0 |
⊢ ( 𝑦 ∩ ∅ ) = ∅ |
| 5 |
4
|
eqeq2i |
⊢ ( 𝑥 = ( 𝑦 ∩ ∅ ) ↔ 𝑥 = ∅ ) |
| 6 |
5
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ ∅ ) ↔ ∃ 𝑦 ∈ 𝑋 𝑥 = ∅ ) |
| 7 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝑋 𝑥 = ∅ ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅ ) ) |
| 8 |
|
19.41v |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅ ) ↔ ( ∃ 𝑦 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅ ) ) |
| 9 |
|
n0 |
⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑋 ) |
| 10 |
9
|
bicomi |
⊢ ( ∃ 𝑦 𝑦 ∈ 𝑋 ↔ 𝑋 ≠ ∅ ) |
| 11 |
10
|
anbi1i |
⊢ ( ( ∃ 𝑦 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅ ) ↔ ( 𝑋 ≠ ∅ ∧ 𝑥 = ∅ ) ) |
| 12 |
8 11
|
bitri |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅ ) ↔ ( 𝑋 ≠ ∅ ∧ 𝑥 = ∅ ) ) |
| 13 |
7 12
|
bitri |
⊢ ( ∃ 𝑦 ∈ 𝑋 𝑥 = ∅ ↔ ( 𝑋 ≠ ∅ ∧ 𝑥 = ∅ ) ) |
| 14 |
6 13
|
bitri |
⊢ ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ ∅ ) ↔ ( 𝑋 ≠ ∅ ∧ 𝑥 = ∅ ) ) |
| 15 |
14
|
baib |
⊢ ( 𝑋 ≠ ∅ → ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ ∅ ) ↔ 𝑥 = ∅ ) ) |
| 16 |
3 15
|
sylan9bb |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅ ) → ( 𝑥 ∈ ( 𝑋 ↾t ∅ ) ↔ 𝑥 = ∅ ) ) |
| 17 |
|
velsn |
⊢ ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ ) |
| 18 |
16 17
|
bitr4di |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅ ) → ( 𝑥 ∈ ( 𝑋 ↾t ∅ ) ↔ 𝑥 ∈ { ∅ } ) ) |
| 19 |
18
|
eqrdv |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅ ) → ( 𝑋 ↾t ∅ ) = { ∅ } ) |
| 20 |
19
|
ex |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ≠ ∅ → ( 𝑋 ↾t ∅ ) = { ∅ } ) ) |