Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
⊢ ∅ ∈ V |
2 |
|
elrest |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ∅ ∈ V ) → ( 𝑥 ∈ ( 𝑋 ↾t ∅ ) ↔ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ ∅ ) ) ) |
3 |
1 2
|
mpan2 |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑥 ∈ ( 𝑋 ↾t ∅ ) ↔ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ ∅ ) ) ) |
4 |
|
in0 |
⊢ ( 𝑦 ∩ ∅ ) = ∅ |
5 |
4
|
eqeq2i |
⊢ ( 𝑥 = ( 𝑦 ∩ ∅ ) ↔ 𝑥 = ∅ ) |
6 |
5
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ ∅ ) ↔ ∃ 𝑦 ∈ 𝑋 𝑥 = ∅ ) |
7 |
|
df-rex |
⊢ ( ∃ 𝑦 ∈ 𝑋 𝑥 = ∅ ↔ ∃ 𝑦 ( 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅ ) ) |
8 |
|
19.41v |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅ ) ↔ ( ∃ 𝑦 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅ ) ) |
9 |
|
n0 |
⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑋 ) |
10 |
9
|
bicomi |
⊢ ( ∃ 𝑦 𝑦 ∈ 𝑋 ↔ 𝑋 ≠ ∅ ) |
11 |
10
|
anbi1i |
⊢ ( ( ∃ 𝑦 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅ ) ↔ ( 𝑋 ≠ ∅ ∧ 𝑥 = ∅ ) ) |
12 |
8 11
|
bitri |
⊢ ( ∃ 𝑦 ( 𝑦 ∈ 𝑋 ∧ 𝑥 = ∅ ) ↔ ( 𝑋 ≠ ∅ ∧ 𝑥 = ∅ ) ) |
13 |
7 12
|
bitri |
⊢ ( ∃ 𝑦 ∈ 𝑋 𝑥 = ∅ ↔ ( 𝑋 ≠ ∅ ∧ 𝑥 = ∅ ) ) |
14 |
6 13
|
bitri |
⊢ ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ ∅ ) ↔ ( 𝑋 ≠ ∅ ∧ 𝑥 = ∅ ) ) |
15 |
14
|
baib |
⊢ ( 𝑋 ≠ ∅ → ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 ∩ ∅ ) ↔ 𝑥 = ∅ ) ) |
16 |
3 15
|
sylan9bb |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅ ) → ( 𝑥 ∈ ( 𝑋 ↾t ∅ ) ↔ 𝑥 = ∅ ) ) |
17 |
|
velsn |
⊢ ( 𝑥 ∈ { ∅ } ↔ 𝑥 = ∅ ) |
18 |
16 17
|
bitr4di |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅ ) → ( 𝑥 ∈ ( 𝑋 ↾t ∅ ) ↔ 𝑥 ∈ { ∅ } ) ) |
19 |
18
|
eqrdv |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅ ) → ( 𝑋 ↾t ∅ ) = { ∅ } ) |
20 |
19
|
ex |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ≠ ∅ → ( 𝑋 ↾t ∅ ) = { ∅ } ) ) |