Metamath Proof Explorer


Theorem bj-rest10b

Description: Alternate version of bj-rest10 . (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-rest10b ( 𝑋 ∈ ( 𝑉 ∖ { ∅ } ) → ( 𝑋t ∅ ) = { ∅ } )

Proof

Step Hyp Ref Expression
1 eldif ( 𝑋 ∈ ( 𝑉 ∖ { ∅ } ) ↔ ( 𝑋𝑉 ∧ ¬ 𝑋 ∈ { ∅ } ) )
2 0ex ∅ ∈ V
3 2 elsn2 ( 𝑋 ∈ { ∅ } ↔ 𝑋 = ∅ )
4 neqne ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ )
5 3 4 sylnbi ( ¬ 𝑋 ∈ { ∅ } → 𝑋 ≠ ∅ )
6 5 anim2i ( ( 𝑋𝑉 ∧ ¬ 𝑋 ∈ { ∅ } ) → ( 𝑋𝑉𝑋 ≠ ∅ ) )
7 1 6 sylbi ( 𝑋 ∈ ( 𝑉 ∖ { ∅ } ) → ( 𝑋𝑉𝑋 ≠ ∅ ) )
8 bj-rest10 ( 𝑋𝑉 → ( 𝑋 ≠ ∅ → ( 𝑋t ∅ ) = { ∅ } ) )
9 8 imp ( ( 𝑋𝑉𝑋 ≠ ∅ ) → ( 𝑋t ∅ ) = { ∅ } )
10 7 9 syl ( 𝑋 ∈ ( 𝑉 ∖ { ∅ } ) → ( 𝑋t ∅ ) = { ∅ } )