Description: Alternate version of bj-rest10 . (Contributed by BJ, 27-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-rest10b | ⊢ ( 𝑋 ∈ ( 𝑉 ∖ { ∅ } ) → ( 𝑋 ↾t ∅ ) = { ∅ } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eldif | ⊢ ( 𝑋 ∈ ( 𝑉 ∖ { ∅ } ) ↔ ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ { ∅ } ) ) | |
| 2 | 0ex | ⊢ ∅ ∈ V | |
| 3 | 2 | elsn2 | ⊢ ( 𝑋 ∈ { ∅ } ↔ 𝑋 = ∅ ) | 
| 4 | neqne | ⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) | |
| 5 | 3 4 | sylnbi | ⊢ ( ¬ 𝑋 ∈ { ∅ } → 𝑋 ≠ ∅ ) | 
| 6 | 5 | anim2i | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ { ∅ } ) → ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅ ) ) | 
| 7 | 1 6 | sylbi | ⊢ ( 𝑋 ∈ ( 𝑉 ∖ { ∅ } ) → ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅ ) ) | 
| 8 | bj-rest10 | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ≠ ∅ → ( 𝑋 ↾t ∅ ) = { ∅ } ) ) | |
| 9 | 8 | imp | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅ ) → ( 𝑋 ↾t ∅ ) = { ∅ } ) | 
| 10 | 7 9 | syl | ⊢ ( 𝑋 ∈ ( 𝑉 ∖ { ∅ } ) → ( 𝑋 ↾t ∅ ) = { ∅ } ) |