Description: Alternate version of bj-rest10 . (Contributed by BJ, 27-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-rest10b | ⊢ ( 𝑋 ∈ ( 𝑉 ∖ { ∅ } ) → ( 𝑋 ↾t ∅ ) = { ∅ } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif | ⊢ ( 𝑋 ∈ ( 𝑉 ∖ { ∅ } ) ↔ ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ { ∅ } ) ) | |
2 | 0ex | ⊢ ∅ ∈ V | |
3 | 2 | elsn2 | ⊢ ( 𝑋 ∈ { ∅ } ↔ 𝑋 = ∅ ) |
4 | neqne | ⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) | |
5 | 3 4 | sylnbi | ⊢ ( ¬ 𝑋 ∈ { ∅ } → 𝑋 ≠ ∅ ) |
6 | 5 | anim2i | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ ¬ 𝑋 ∈ { ∅ } ) → ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅ ) ) |
7 | 1 6 | sylbi | ⊢ ( 𝑋 ∈ ( 𝑉 ∖ { ∅ } ) → ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅ ) ) |
8 | bj-rest10 | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ≠ ∅ → ( 𝑋 ↾t ∅ ) = { ∅ } ) ) | |
9 | 8 | imp | ⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ∅ ) → ( 𝑋 ↾t ∅ ) = { ∅ } ) |
10 | 7 9 | syl | ⊢ ( 𝑋 ∈ ( 𝑉 ∖ { ∅ } ) → ( 𝑋 ↾t ∅ ) = { ∅ } ) |