| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eldif |  |-  ( X e. ( V \ { (/) } ) <-> ( X e. V /\ -. X e. { (/) } ) ) | 
						
							| 2 |  | 0ex |  |-  (/) e. _V | 
						
							| 3 | 2 | elsn2 |  |-  ( X e. { (/) } <-> X = (/) ) | 
						
							| 4 |  | neqne |  |-  ( -. X = (/) -> X =/= (/) ) | 
						
							| 5 | 3 4 | sylnbi |  |-  ( -. X e. { (/) } -> X =/= (/) ) | 
						
							| 6 | 5 | anim2i |  |-  ( ( X e. V /\ -. X e. { (/) } ) -> ( X e. V /\ X =/= (/) ) ) | 
						
							| 7 | 1 6 | sylbi |  |-  ( X e. ( V \ { (/) } ) -> ( X e. V /\ X =/= (/) ) ) | 
						
							| 8 |  | bj-rest10 |  |-  ( X e. V -> ( X =/= (/) -> ( X |`t (/) ) = { (/) } ) ) | 
						
							| 9 | 8 | imp |  |-  ( ( X e. V /\ X =/= (/) ) -> ( X |`t (/) ) = { (/) } ) | 
						
							| 10 | 7 9 | syl |  |-  ( X e. ( V \ { (/) } ) -> ( X |`t (/) ) = { (/) } ) |