Metamath Proof Explorer


Theorem bj-rest10b

Description: Alternate version of bj-rest10 . (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-rest10b
|- ( X e. ( V \ { (/) } ) -> ( X |`t (/) ) = { (/) } )

Proof

Step Hyp Ref Expression
1 eldif
 |-  ( X e. ( V \ { (/) } ) <-> ( X e. V /\ -. X e. { (/) } ) )
2 0ex
 |-  (/) e. _V
3 2 elsn2
 |-  ( X e. { (/) } <-> X = (/) )
4 neqne
 |-  ( -. X = (/) -> X =/= (/) )
5 3 4 sylnbi
 |-  ( -. X e. { (/) } -> X =/= (/) )
6 5 anim2i
 |-  ( ( X e. V /\ -. X e. { (/) } ) -> ( X e. V /\ X =/= (/) ) )
7 1 6 sylbi
 |-  ( X e. ( V \ { (/) } ) -> ( X e. V /\ X =/= (/) ) )
8 bj-rest10
 |-  ( X e. V -> ( X =/= (/) -> ( X |`t (/) ) = { (/) } ) )
9 8 imp
 |-  ( ( X e. V /\ X =/= (/) ) -> ( X |`t (/) ) = { (/) } )
10 7 9 syl
 |-  ( X e. ( V \ { (/) } ) -> ( X |`t (/) ) = { (/) } )