Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
|- ( X e. ( V \ { (/) } ) <-> ( X e. V /\ -. X e. { (/) } ) ) |
2 |
|
0ex |
|- (/) e. _V |
3 |
2
|
elsn2 |
|- ( X e. { (/) } <-> X = (/) ) |
4 |
|
neqne |
|- ( -. X = (/) -> X =/= (/) ) |
5 |
3 4
|
sylnbi |
|- ( -. X e. { (/) } -> X =/= (/) ) |
6 |
5
|
anim2i |
|- ( ( X e. V /\ -. X e. { (/) } ) -> ( X e. V /\ X =/= (/) ) ) |
7 |
1 6
|
sylbi |
|- ( X e. ( V \ { (/) } ) -> ( X e. V /\ X =/= (/) ) ) |
8 |
|
bj-rest10 |
|- ( X e. V -> ( X =/= (/) -> ( X |`t (/) ) = { (/) } ) ) |
9 |
8
|
imp |
|- ( ( X e. V /\ X =/= (/) ) -> ( X |`t (/) ) = { (/) } ) |
10 |
7 9
|
syl |
|- ( X e. ( V \ { (/) } ) -> ( X |`t (/) ) = { (/) } ) |