Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Set theory
Elementwise intersection (families of sets induced on a subset)
bj-rest10b
Next ⟩
bj-restn0
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-rest10b
Description:
Alternate version of
bj-rest10
.
(Contributed by
BJ
, 27-Apr-2021)
Ref
Expression
Assertion
bj-rest10b
⊢
X
∈
V
∖
∅
→
X
↾
𝑡
∅
=
∅
Proof
Step
Hyp
Ref
Expression
1
eldif
⊢
X
∈
V
∖
∅
↔
X
∈
V
∧
¬
X
∈
∅
2
0ex
⊢
∅
∈
V
3
2
elsn2
⊢
X
∈
∅
↔
X
=
∅
4
neqne
⊢
¬
X
=
∅
→
X
≠
∅
5
3
4
sylnbi
⊢
¬
X
∈
∅
→
X
≠
∅
6
5
anim2i
⊢
X
∈
V
∧
¬
X
∈
∅
→
X
∈
V
∧
X
≠
∅
7
1
6
sylbi
⊢
X
∈
V
∖
∅
→
X
∈
V
∧
X
≠
∅
8
bj-rest10
⊢
X
∈
V
→
X
≠
∅
→
X
↾
𝑡
∅
=
∅
9
8
imp
⊢
X
∈
V
∧
X
≠
∅
→
X
↾
𝑡
∅
=
∅
10
7
9
syl
⊢
X
∈
V
∖
∅
→
X
↾
𝑡
∅
=
∅