Metamath Proof Explorer


Theorem bj-rest10

Description: An elementwise intersection on a nonempty family by the empty set is the singleton on the empty set. TODO: this generalizes rest0 and could replace it. (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-rest10 X V X X 𝑡 =

Proof

Step Hyp Ref Expression
1 0ex V
2 elrest X V V x X 𝑡 y X x = y
3 1 2 mpan2 X V x X 𝑡 y X x = y
4 in0 y =
5 4 eqeq2i x = y x =
6 5 rexbii y X x = y y X x =
7 df-rex y X x = y y X x =
8 19.41v y y X x = y y X x =
9 n0 X y y X
10 9 bicomi y y X X
11 10 anbi1i y y X x = X x =
12 8 11 bitri y y X x = X x =
13 7 12 bitri y X x = X x =
14 6 13 bitri y X x = y X x =
15 14 baib X y X x = y x =
16 3 15 sylan9bb X V X x X 𝑡 x =
17 velsn x x =
18 16 17 bitr4di X V X x X 𝑡 x
19 18 eqrdv X V X X 𝑡 =
20 19 ex X V X X 𝑡 =