Metamath Proof Explorer


Theorem bj-rest10

Description: An elementwise intersection on a nonempty family by the empty set is the singleton on the empty set. TODO: this generalizes rest0 and could replace it. (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-rest10 XVXX𝑡=

Proof

Step Hyp Ref Expression
1 0ex V
2 elrest XVVxX𝑡yXx=y
3 1 2 mpan2 XVxX𝑡yXx=y
4 in0 y=
5 4 eqeq2i x=yx=
6 5 rexbii yXx=yyXx=
7 df-rex yXx=yyXx=
8 19.41v yyXx=yyXx=
9 n0 XyyX
10 9 bicomi yyXX
11 10 anbi1i yyXx=Xx=
12 8 11 bitri yyXx=Xx=
13 7 12 bitri yXx=Xx=
14 6 13 bitri yXx=yXx=
15 14 baib XyXx=yx=
16 3 15 sylan9bb XVXxX𝑡x=
17 velsn xx=
18 16 17 bitr4di XVXxX𝑡x
19 18 eqrdv XVXX𝑡=
20 19 ex XVXX𝑡=