| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex |  |-  (/) e. _V | 
						
							| 2 |  | elrest |  |-  ( ( X e. V /\ (/) e. _V ) -> ( x e. ( X |`t (/) ) <-> E. y e. X x = ( y i^i (/) ) ) ) | 
						
							| 3 | 1 2 | mpan2 |  |-  ( X e. V -> ( x e. ( X |`t (/) ) <-> E. y e. X x = ( y i^i (/) ) ) ) | 
						
							| 4 |  | in0 |  |-  ( y i^i (/) ) = (/) | 
						
							| 5 | 4 | eqeq2i |  |-  ( x = ( y i^i (/) ) <-> x = (/) ) | 
						
							| 6 | 5 | rexbii |  |-  ( E. y e. X x = ( y i^i (/) ) <-> E. y e. X x = (/) ) | 
						
							| 7 |  | df-rex |  |-  ( E. y e. X x = (/) <-> E. y ( y e. X /\ x = (/) ) ) | 
						
							| 8 |  | 19.41v |  |-  ( E. y ( y e. X /\ x = (/) ) <-> ( E. y y e. X /\ x = (/) ) ) | 
						
							| 9 |  | n0 |  |-  ( X =/= (/) <-> E. y y e. X ) | 
						
							| 10 | 9 | bicomi |  |-  ( E. y y e. X <-> X =/= (/) ) | 
						
							| 11 | 10 | anbi1i |  |-  ( ( E. y y e. X /\ x = (/) ) <-> ( X =/= (/) /\ x = (/) ) ) | 
						
							| 12 | 8 11 | bitri |  |-  ( E. y ( y e. X /\ x = (/) ) <-> ( X =/= (/) /\ x = (/) ) ) | 
						
							| 13 | 7 12 | bitri |  |-  ( E. y e. X x = (/) <-> ( X =/= (/) /\ x = (/) ) ) | 
						
							| 14 | 6 13 | bitri |  |-  ( E. y e. X x = ( y i^i (/) ) <-> ( X =/= (/) /\ x = (/) ) ) | 
						
							| 15 | 14 | baib |  |-  ( X =/= (/) -> ( E. y e. X x = ( y i^i (/) ) <-> x = (/) ) ) | 
						
							| 16 | 3 15 | sylan9bb |  |-  ( ( X e. V /\ X =/= (/) ) -> ( x e. ( X |`t (/) ) <-> x = (/) ) ) | 
						
							| 17 |  | velsn |  |-  ( x e. { (/) } <-> x = (/) ) | 
						
							| 18 | 16 17 | bitr4di |  |-  ( ( X e. V /\ X =/= (/) ) -> ( x e. ( X |`t (/) ) <-> x e. { (/) } ) ) | 
						
							| 19 | 18 | eqrdv |  |-  ( ( X e. V /\ X =/= (/) ) -> ( X |`t (/) ) = { (/) } ) | 
						
							| 20 | 19 | ex |  |-  ( X e. V -> ( X =/= (/) -> ( X |`t (/) ) = { (/) } ) ) |