Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
|- (/) e. _V |
2 |
|
elrest |
|- ( ( X e. V /\ (/) e. _V ) -> ( x e. ( X |`t (/) ) <-> E. y e. X x = ( y i^i (/) ) ) ) |
3 |
1 2
|
mpan2 |
|- ( X e. V -> ( x e. ( X |`t (/) ) <-> E. y e. X x = ( y i^i (/) ) ) ) |
4 |
|
in0 |
|- ( y i^i (/) ) = (/) |
5 |
4
|
eqeq2i |
|- ( x = ( y i^i (/) ) <-> x = (/) ) |
6 |
5
|
rexbii |
|- ( E. y e. X x = ( y i^i (/) ) <-> E. y e. X x = (/) ) |
7 |
|
df-rex |
|- ( E. y e. X x = (/) <-> E. y ( y e. X /\ x = (/) ) ) |
8 |
|
19.41v |
|- ( E. y ( y e. X /\ x = (/) ) <-> ( E. y y e. X /\ x = (/) ) ) |
9 |
|
n0 |
|- ( X =/= (/) <-> E. y y e. X ) |
10 |
9
|
bicomi |
|- ( E. y y e. X <-> X =/= (/) ) |
11 |
10
|
anbi1i |
|- ( ( E. y y e. X /\ x = (/) ) <-> ( X =/= (/) /\ x = (/) ) ) |
12 |
8 11
|
bitri |
|- ( E. y ( y e. X /\ x = (/) ) <-> ( X =/= (/) /\ x = (/) ) ) |
13 |
7 12
|
bitri |
|- ( E. y e. X x = (/) <-> ( X =/= (/) /\ x = (/) ) ) |
14 |
6 13
|
bitri |
|- ( E. y e. X x = ( y i^i (/) ) <-> ( X =/= (/) /\ x = (/) ) ) |
15 |
14
|
baib |
|- ( X =/= (/) -> ( E. y e. X x = ( y i^i (/) ) <-> x = (/) ) ) |
16 |
3 15
|
sylan9bb |
|- ( ( X e. V /\ X =/= (/) ) -> ( x e. ( X |`t (/) ) <-> x = (/) ) ) |
17 |
|
velsn |
|- ( x e. { (/) } <-> x = (/) ) |
18 |
16 17
|
bitr4di |
|- ( ( X e. V /\ X =/= (/) ) -> ( x e. ( X |`t (/) ) <-> x e. { (/) } ) ) |
19 |
18
|
eqrdv |
|- ( ( X e. V /\ X =/= (/) ) -> ( X |`t (/) ) = { (/) } ) |
20 |
19
|
ex |
|- ( X e. V -> ( X =/= (/) -> ( X |`t (/) ) = { (/) } ) ) |