| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sseqin2 | ⊢ ( 𝐴  ⊆  𝑌  ↔  ( 𝑌  ∩  𝐴 )  =  𝐴 ) | 
						
							| 2 |  | sneq | ⊢ ( ( 𝑌  ∩  𝐴 )  =  𝐴  →  { ( 𝑌  ∩  𝐴 ) }  =  { 𝐴 } ) | 
						
							| 3 | 1 2 | sylbi | ⊢ ( 𝐴  ⊆  𝑌  →  { ( 𝑌  ∩  𝐴 ) }  =  { 𝐴 } ) | 
						
							| 4 |  | ssexg | ⊢ ( ( 𝐴  ⊆  𝑌  ∧  𝑌  ∈  𝑉 )  →  𝐴  ∈  V ) | 
						
							| 5 | 4 | ancoms | ⊢ ( ( 𝑌  ∈  𝑉  ∧  𝐴  ⊆  𝑌 )  →  𝐴  ∈  V ) | 
						
							| 6 |  | bj-restsn | ⊢ ( ( 𝑌  ∈  𝑉  ∧  𝐴  ∈  V )  →  ( { 𝑌 }  ↾t  𝐴 )  =  { ( 𝑌  ∩  𝐴 ) } ) | 
						
							| 7 | 5 6 | syldan | ⊢ ( ( 𝑌  ∈  𝑉  ∧  𝐴  ⊆  𝑌 )  →  ( { 𝑌 }  ↾t  𝐴 )  =  { ( 𝑌  ∩  𝐴 ) } ) | 
						
							| 8 |  | eqeq2 | ⊢ ( { ( 𝑌  ∩  𝐴 ) }  =  { 𝐴 }  →  ( ( { 𝑌 }  ↾t  𝐴 )  =  { ( 𝑌  ∩  𝐴 ) }  ↔  ( { 𝑌 }  ↾t  𝐴 )  =  { 𝐴 } ) ) | 
						
							| 9 | 8 | biimpa | ⊢ ( ( { ( 𝑌  ∩  𝐴 ) }  =  { 𝐴 }  ∧  ( { 𝑌 }  ↾t  𝐴 )  =  { ( 𝑌  ∩  𝐴 ) } )  →  ( { 𝑌 }  ↾t  𝐴 )  =  { 𝐴 } ) | 
						
							| 10 | 3 7 9 | syl2an2 | ⊢ ( ( 𝑌  ∈  𝑉  ∧  𝐴  ⊆  𝑌 )  →  ( { 𝑌 }  ↾t  𝐴 )  =  { 𝐴 } ) |