Metamath Proof Explorer


Theorem bj-restsnss

Description: Special case of bj-restsn . (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restsnss
|- ( ( Y e. V /\ A C_ Y ) -> ( { Y } |`t A ) = { A } )

Proof

Step Hyp Ref Expression
1 sseqin2
 |-  ( A C_ Y <-> ( Y i^i A ) = A )
2 sneq
 |-  ( ( Y i^i A ) = A -> { ( Y i^i A ) } = { A } )
3 1 2 sylbi
 |-  ( A C_ Y -> { ( Y i^i A ) } = { A } )
4 ssexg
 |-  ( ( A C_ Y /\ Y e. V ) -> A e. _V )
5 4 ancoms
 |-  ( ( Y e. V /\ A C_ Y ) -> A e. _V )
6 bj-restsn
 |-  ( ( Y e. V /\ A e. _V ) -> ( { Y } |`t A ) = { ( Y i^i A ) } )
7 5 6 syldan
 |-  ( ( Y e. V /\ A C_ Y ) -> ( { Y } |`t A ) = { ( Y i^i A ) } )
8 eqeq2
 |-  ( { ( Y i^i A ) } = { A } -> ( ( { Y } |`t A ) = { ( Y i^i A ) } <-> ( { Y } |`t A ) = { A } ) )
9 8 biimpa
 |-  ( ( { ( Y i^i A ) } = { A } /\ ( { Y } |`t A ) = { ( Y i^i A ) } ) -> ( { Y } |`t A ) = { A } )
10 3 7 9 syl2an2
 |-  ( ( Y e. V /\ A C_ Y ) -> ( { Y } |`t A ) = { A } )