| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfss2 | ⊢ ( 𝑌  ⊆  𝐴  ↔  ( 𝑌  ∩  𝐴 )  =  𝑌 ) | 
						
							| 2 |  | sneq | ⊢ ( ( 𝑌  ∩  𝐴 )  =  𝑌  →  { ( 𝑌  ∩  𝐴 ) }  =  { 𝑌 } ) | 
						
							| 3 | 1 2 | sylbi | ⊢ ( 𝑌  ⊆  𝐴  →  { ( 𝑌  ∩  𝐴 ) }  =  { 𝑌 } ) | 
						
							| 4 |  | ssexg | ⊢ ( ( 𝑌  ⊆  𝐴  ∧  𝐴  ∈  𝑉 )  →  𝑌  ∈  V ) | 
						
							| 5 | 4 | ancoms | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑌  ⊆  𝐴 )  →  𝑌  ∈  V ) | 
						
							| 6 |  | bj-restsn | ⊢ ( ( 𝑌  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( { 𝑌 }  ↾t  𝐴 )  =  { ( 𝑌  ∩  𝐴 ) } ) | 
						
							| 7 | 6 | ancoms | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑌  ∈  V )  →  ( { 𝑌 }  ↾t  𝐴 )  =  { ( 𝑌  ∩  𝐴 ) } ) | 
						
							| 8 | 5 7 | syldan | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑌  ⊆  𝐴 )  →  ( { 𝑌 }  ↾t  𝐴 )  =  { ( 𝑌  ∩  𝐴 ) } ) | 
						
							| 9 |  | eqeq2 | ⊢ ( { ( 𝑌  ∩  𝐴 ) }  =  { 𝑌 }  →  ( ( { 𝑌 }  ↾t  𝐴 )  =  { ( 𝑌  ∩  𝐴 ) }  ↔  ( { 𝑌 }  ↾t  𝐴 )  =  { 𝑌 } ) ) | 
						
							| 10 | 9 | biimpa | ⊢ ( ( { ( 𝑌  ∩  𝐴 ) }  =  { 𝑌 }  ∧  ( { 𝑌 }  ↾t  𝐴 )  =  { ( 𝑌  ∩  𝐴 ) } )  →  ( { 𝑌 }  ↾t  𝐴 )  =  { 𝑌 } ) | 
						
							| 11 | 3 8 10 | syl2an2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝑌  ⊆  𝐴 )  →  ( { 𝑌 }  ↾t  𝐴 )  =  { 𝑌 } ) |