Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for BJ
Set theory
Elementwise intersection (families of sets induced on a subset)
bj-restsnss2
Next ⟩
bj-restsn0
Metamath Proof Explorer
Ascii
Unicode
Theorem
bj-restsnss2
Description:
Special case of
bj-restsn
.
(Contributed by
BJ
, 27-Apr-2021)
Ref
Expression
Assertion
bj-restsnss2
⊢
A
∈
V
∧
Y
⊆
A
→
Y
↾
𝑡
A
=
Y
Proof
Step
Hyp
Ref
Expression
1
df-ss
⊢
Y
⊆
A
↔
Y
∩
A
=
Y
2
sneq
⊢
Y
∩
A
=
Y
→
Y
∩
A
=
Y
3
1
2
sylbi
⊢
Y
⊆
A
→
Y
∩
A
=
Y
4
ssexg
⊢
Y
⊆
A
∧
A
∈
V
→
Y
∈
V
5
4
ancoms
⊢
A
∈
V
∧
Y
⊆
A
→
Y
∈
V
6
bj-restsn
⊢
Y
∈
V
∧
A
∈
V
→
Y
↾
𝑡
A
=
Y
∩
A
7
6
ancoms
⊢
A
∈
V
∧
Y
∈
V
→
Y
↾
𝑡
A
=
Y
∩
A
8
5
7
syldan
⊢
A
∈
V
∧
Y
⊆
A
→
Y
↾
𝑡
A
=
Y
∩
A
9
eqeq2
⊢
Y
∩
A
=
Y
→
Y
↾
𝑡
A
=
Y
∩
A
↔
Y
↾
𝑡
A
=
Y
10
9
biimpa
⊢
Y
∩
A
=
Y
∧
Y
↾
𝑡
A
=
Y
∩
A
→
Y
↾
𝑡
A
=
Y
11
3
8
10
syl2an2
⊢
A
∈
V
∧
Y
⊆
A
→
Y
↾
𝑡
A
=
Y