Metamath Proof Explorer


Theorem bj-restsn

Description: An elementwise intersection on the singleton on a set is the singleton on the intersection by that set. Generalization of bj-restsn0 and bj-restsnid . (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restsn YVAWY𝑡A=YA

Proof

Step Hyp Ref Expression
1 snex YV
2 elrest YVAWxY𝑡AyYx=yA
3 1 2 mpan AWxY𝑡AyYx=yA
4 velsn xyAx=yA
5 ineq1 y=YyA=YA
6 5 sneqd y=YyA=YA
7 6 eleq2d y=YxyAxYA
8 4 7 bitr3id y=Yx=yAxYA
9 8 rexsng YVyYx=yAxYA
10 3 9 sylan9bbr YVAWxY𝑡AxYA
11 10 eqrdv YVAWY𝑡A=YA