Metamath Proof Explorer


Theorem bj-restsnid

Description: The elementwise intersection on the singleton on a class by that class is the singleton on that class. Special case of bj-restsn and bj-restsnss . (Contributed by BJ, 27-Apr-2021)

Ref Expression
Assertion bj-restsnid
|- ( { A } |`t A ) = { A }

Proof

Step Hyp Ref Expression
1 ssid
 |-  A C_ A
2 bj-restsnss
 |-  ( ( A e. _V /\ A C_ A ) -> ( { A } |`t A ) = { A } )
3 1 2 mpan2
 |-  ( A e. _V -> ( { A } |`t A ) = { A } )
4 df-rest
 |-  |`t = ( x e. _V , y e. _V |-> ran ( z e. x |-> ( z i^i y ) ) )
5 4 reldmmpo
 |-  Rel dom |`t
6 5 ovprc2
 |-  ( -. A e. _V -> ( { A } |`t A ) = (/) )
7 snprc
 |-  ( -. A e. _V <-> { A } = (/) )
8 7 biimpi
 |-  ( -. A e. _V -> { A } = (/) )
9 6 8 eqtr4d
 |-  ( -. A e. _V -> ( { A } |`t A ) = { A } )
10 3 9 pm2.61i
 |-  ( { A } |`t A ) = { A }