| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bnj1083.3 |  |-  ( ch <-> ( n e. D /\ f Fn n /\ ph /\ ps ) ) | 
						
							| 2 |  | bnj1083.8 |  |-  K = { f | E. n e. D ( f Fn n /\ ph /\ ps ) } | 
						
							| 3 |  | df-rex |  |-  ( E. n e. D ( f Fn n /\ ph /\ ps ) <-> E. n ( n e. D /\ ( f Fn n /\ ph /\ ps ) ) ) | 
						
							| 4 | 2 | eqabri |  |-  ( f e. K <-> E. n e. D ( f Fn n /\ ph /\ ps ) ) | 
						
							| 5 |  | bnj252 |  |-  ( ( n e. D /\ f Fn n /\ ph /\ ps ) <-> ( n e. D /\ ( f Fn n /\ ph /\ ps ) ) ) | 
						
							| 6 | 1 5 | bitri |  |-  ( ch <-> ( n e. D /\ ( f Fn n /\ ph /\ ps ) ) ) | 
						
							| 7 | 6 | exbii |  |-  ( E. n ch <-> E. n ( n e. D /\ ( f Fn n /\ ph /\ ps ) ) ) | 
						
							| 8 | 3 4 7 | 3bitr4i |  |-  ( f e. K <-> E. n ch ) |