Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1446.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
2 |
|
bnj1446.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
3 |
|
bnj1446.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
4 |
|
bnj1446.4 |
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) ) |
5 |
|
bnj1446.5 |
|- D = { x e. A | -. E. f ta } |
6 |
|
bnj1446.6 |
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) ) |
7 |
|
bnj1446.7 |
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) ) |
8 |
|
bnj1446.8 |
|- ( ta' <-> [. y / x ]. ta ) |
9 |
|
bnj1446.9 |
|- H = { f | E. y e. _pred ( x , A , R ) ta' } |
10 |
|
bnj1446.10 |
|- P = U. H |
11 |
|
bnj1446.11 |
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >. |
12 |
|
bnj1446.12 |
|- Q = ( P u. { <. x , ( G ` Z ) >. } ) |
13 |
|
bnj1446.13 |
|- W = <. z , ( Q |` _pred ( z , A , R ) ) >. |
14 |
|
nfcv |
|- F/_ d _pred ( x , A , R ) |
15 |
|
nfcv |
|- F/_ d y |
16 |
|
nfre1 |
|- F/ d E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) |
17 |
16
|
nfab |
|- F/_ d { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
18 |
3 17
|
nfcxfr |
|- F/_ d C |
19 |
18
|
nfcri |
|- F/ d f e. C |
20 |
|
nfv |
|- F/ d dom f = ( { x } u. _trCl ( x , A , R ) ) |
21 |
19 20
|
nfan |
|- F/ d ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) |
22 |
4 21
|
nfxfr |
|- F/ d ta |
23 |
15 22
|
nfsbcw |
|- F/ d [. y / x ]. ta |
24 |
8 23
|
nfxfr |
|- F/ d ta' |
25 |
14 24
|
nfrex |
|- F/ d E. y e. _pred ( x , A , R ) ta' |
26 |
25
|
nfab |
|- F/_ d { f | E. y e. _pred ( x , A , R ) ta' } |
27 |
9 26
|
nfcxfr |
|- F/_ d H |
28 |
27
|
nfuni |
|- F/_ d U. H |
29 |
10 28
|
nfcxfr |
|- F/_ d P |
30 |
|
nfcv |
|- F/_ d x |
31 |
|
nfcv |
|- F/_ d G |
32 |
29 14
|
nfres |
|- F/_ d ( P |` _pred ( x , A , R ) ) |
33 |
30 32
|
nfop |
|- F/_ d <. x , ( P |` _pred ( x , A , R ) ) >. |
34 |
11 33
|
nfcxfr |
|- F/_ d Z |
35 |
31 34
|
nffv |
|- F/_ d ( G ` Z ) |
36 |
30 35
|
nfop |
|- F/_ d <. x , ( G ` Z ) >. |
37 |
36
|
nfsn |
|- F/_ d { <. x , ( G ` Z ) >. } |
38 |
29 37
|
nfun |
|- F/_ d ( P u. { <. x , ( G ` Z ) >. } ) |
39 |
12 38
|
nfcxfr |
|- F/_ d Q |
40 |
|
nfcv |
|- F/_ d z |
41 |
39 40
|
nffv |
|- F/_ d ( Q ` z ) |
42 |
|
nfcv |
|- F/_ d _pred ( z , A , R ) |
43 |
39 42
|
nfres |
|- F/_ d ( Q |` _pred ( z , A , R ) ) |
44 |
40 43
|
nfop |
|- F/_ d <. z , ( Q |` _pred ( z , A , R ) ) >. |
45 |
13 44
|
nfcxfr |
|- F/_ d W |
46 |
31 45
|
nffv |
|- F/_ d ( G ` W ) |
47 |
41 46
|
nfeq |
|- F/ d ( Q ` z ) = ( G ` W ) |
48 |
47
|
nf5ri |
|- ( ( Q ` z ) = ( G ` W ) -> A. d ( Q ` z ) = ( G ` W ) ) |