| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1446.1 |
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) } |
| 2 |
|
bnj1446.2 |
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >. |
| 3 |
|
bnj1446.3 |
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
| 4 |
|
bnj1446.4 |
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) ) |
| 5 |
|
bnj1446.5 |
|- D = { x e. A | -. E. f ta } |
| 6 |
|
bnj1446.6 |
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) ) |
| 7 |
|
bnj1446.7 |
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) ) |
| 8 |
|
bnj1446.8 |
|- ( ta' <-> [. y / x ]. ta ) |
| 9 |
|
bnj1446.9 |
|- H = { f | E. y e. _pred ( x , A , R ) ta' } |
| 10 |
|
bnj1446.10 |
|- P = U. H |
| 11 |
|
bnj1446.11 |
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >. |
| 12 |
|
bnj1446.12 |
|- Q = ( P u. { <. x , ( G ` Z ) >. } ) |
| 13 |
|
bnj1446.13 |
|- W = <. z , ( Q |` _pred ( z , A , R ) ) >. |
| 14 |
|
nfcv |
|- F/_ d _pred ( x , A , R ) |
| 15 |
|
nfcv |
|- F/_ d y |
| 16 |
|
nfre1 |
|- F/ d E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) |
| 17 |
16
|
nfab |
|- F/_ d { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) } |
| 18 |
3 17
|
nfcxfr |
|- F/_ d C |
| 19 |
18
|
nfcri |
|- F/ d f e. C |
| 20 |
|
nfv |
|- F/ d dom f = ( { x } u. _trCl ( x , A , R ) ) |
| 21 |
19 20
|
nfan |
|- F/ d ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) |
| 22 |
4 21
|
nfxfr |
|- F/ d ta |
| 23 |
15 22
|
nfsbcw |
|- F/ d [. y / x ]. ta |
| 24 |
8 23
|
nfxfr |
|- F/ d ta' |
| 25 |
14 24
|
nfrexw |
|- F/ d E. y e. _pred ( x , A , R ) ta' |
| 26 |
25
|
nfab |
|- F/_ d { f | E. y e. _pred ( x , A , R ) ta' } |
| 27 |
9 26
|
nfcxfr |
|- F/_ d H |
| 28 |
27
|
nfuni |
|- F/_ d U. H |
| 29 |
10 28
|
nfcxfr |
|- F/_ d P |
| 30 |
|
nfcv |
|- F/_ d x |
| 31 |
|
nfcv |
|- F/_ d G |
| 32 |
29 14
|
nfres |
|- F/_ d ( P |` _pred ( x , A , R ) ) |
| 33 |
30 32
|
nfop |
|- F/_ d <. x , ( P |` _pred ( x , A , R ) ) >. |
| 34 |
11 33
|
nfcxfr |
|- F/_ d Z |
| 35 |
31 34
|
nffv |
|- F/_ d ( G ` Z ) |
| 36 |
30 35
|
nfop |
|- F/_ d <. x , ( G ` Z ) >. |
| 37 |
36
|
nfsn |
|- F/_ d { <. x , ( G ` Z ) >. } |
| 38 |
29 37
|
nfun |
|- F/_ d ( P u. { <. x , ( G ` Z ) >. } ) |
| 39 |
12 38
|
nfcxfr |
|- F/_ d Q |
| 40 |
|
nfcv |
|- F/_ d z |
| 41 |
39 40
|
nffv |
|- F/_ d ( Q ` z ) |
| 42 |
|
nfcv |
|- F/_ d _pred ( z , A , R ) |
| 43 |
39 42
|
nfres |
|- F/_ d ( Q |` _pred ( z , A , R ) ) |
| 44 |
40 43
|
nfop |
|- F/_ d <. z , ( Q |` _pred ( z , A , R ) ) >. |
| 45 |
13 44
|
nfcxfr |
|- F/_ d W |
| 46 |
31 45
|
nffv |
|- F/_ d ( G ` W ) |
| 47 |
41 46
|
nfeq |
|- F/ d ( Q ` z ) = ( G ` W ) |
| 48 |
47
|
nf5ri |
|- ( ( Q ` z ) = ( G ` W ) -> A. d ( Q ` z ) = ( G ` W ) ) |