Metamath Proof Explorer


Theorem bnj1446

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1446.1
|- B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
bnj1446.2
|- Y = <. x , ( f |` _pred ( x , A , R ) ) >.
bnj1446.3
|- C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
bnj1446.4
|- ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) )
bnj1446.5
|- D = { x e. A | -. E. f ta }
bnj1446.6
|- ( ps <-> ( R _FrSe A /\ D =/= (/) ) )
bnj1446.7
|- ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) )
bnj1446.8
|- ( ta' <-> [. y / x ]. ta )
bnj1446.9
|- H = { f | E. y e. _pred ( x , A , R ) ta' }
bnj1446.10
|- P = U. H
bnj1446.11
|- Z = <. x , ( P |` _pred ( x , A , R ) ) >.
bnj1446.12
|- Q = ( P u. { <. x , ( G ` Z ) >. } )
bnj1446.13
|- W = <. z , ( Q |` _pred ( z , A , R ) ) >.
Assertion bnj1446
|- ( ( Q ` z ) = ( G ` W ) -> A. d ( Q ` z ) = ( G ` W ) )

Proof

Step Hyp Ref Expression
1 bnj1446.1
 |-  B = { d | ( d C_ A /\ A. x e. d _pred ( x , A , R ) C_ d ) }
2 bnj1446.2
 |-  Y = <. x , ( f |` _pred ( x , A , R ) ) >.
3 bnj1446.3
 |-  C = { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
4 bnj1446.4
 |-  ( ta <-> ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) ) )
5 bnj1446.5
 |-  D = { x e. A | -. E. f ta }
6 bnj1446.6
 |-  ( ps <-> ( R _FrSe A /\ D =/= (/) ) )
7 bnj1446.7
 |-  ( ch <-> ( ps /\ x e. D /\ A. y e. D -. y R x ) )
8 bnj1446.8
 |-  ( ta' <-> [. y / x ]. ta )
9 bnj1446.9
 |-  H = { f | E. y e. _pred ( x , A , R ) ta' }
10 bnj1446.10
 |-  P = U. H
11 bnj1446.11
 |-  Z = <. x , ( P |` _pred ( x , A , R ) ) >.
12 bnj1446.12
 |-  Q = ( P u. { <. x , ( G ` Z ) >. } )
13 bnj1446.13
 |-  W = <. z , ( Q |` _pred ( z , A , R ) ) >.
14 nfcv
 |-  F/_ d _pred ( x , A , R )
15 nfcv
 |-  F/_ d y
16 nfre1
 |-  F/ d E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) )
17 16 nfab
 |-  F/_ d { f | E. d e. B ( f Fn d /\ A. x e. d ( f ` x ) = ( G ` Y ) ) }
18 3 17 nfcxfr
 |-  F/_ d C
19 18 nfcri
 |-  F/ d f e. C
20 nfv
 |-  F/ d dom f = ( { x } u. _trCl ( x , A , R ) )
21 19 20 nfan
 |-  F/ d ( f e. C /\ dom f = ( { x } u. _trCl ( x , A , R ) ) )
22 4 21 nfxfr
 |-  F/ d ta
23 15 22 nfsbcw
 |-  F/ d [. y / x ]. ta
24 8 23 nfxfr
 |-  F/ d ta'
25 14 24 nfrex
 |-  F/ d E. y e. _pred ( x , A , R ) ta'
26 25 nfab
 |-  F/_ d { f | E. y e. _pred ( x , A , R ) ta' }
27 9 26 nfcxfr
 |-  F/_ d H
28 27 nfuni
 |-  F/_ d U. H
29 10 28 nfcxfr
 |-  F/_ d P
30 nfcv
 |-  F/_ d x
31 nfcv
 |-  F/_ d G
32 29 14 nfres
 |-  F/_ d ( P |` _pred ( x , A , R ) )
33 30 32 nfop
 |-  F/_ d <. x , ( P |` _pred ( x , A , R ) ) >.
34 11 33 nfcxfr
 |-  F/_ d Z
35 31 34 nffv
 |-  F/_ d ( G ` Z )
36 30 35 nfop
 |-  F/_ d <. x , ( G ` Z ) >.
37 36 nfsn
 |-  F/_ d { <. x , ( G ` Z ) >. }
38 29 37 nfun
 |-  F/_ d ( P u. { <. x , ( G ` Z ) >. } )
39 12 38 nfcxfr
 |-  F/_ d Q
40 nfcv
 |-  F/_ d z
41 39 40 nffv
 |-  F/_ d ( Q ` z )
42 nfcv
 |-  F/_ d _pred ( z , A , R )
43 39 42 nfres
 |-  F/_ d ( Q |` _pred ( z , A , R ) )
44 40 43 nfop
 |-  F/_ d <. z , ( Q |` _pred ( z , A , R ) ) >.
45 13 44 nfcxfr
 |-  F/_ d W
46 31 45 nffv
 |-  F/_ d ( G ` W )
47 41 46 nfeq
 |-  F/ d ( Q ` z ) = ( G ` W )
48 47 nf5ri
 |-  ( ( Q ` z ) = ( G ` W ) -> A. d ( Q ` z ) = ( G ` W ) )