Metamath Proof Explorer


Theorem bnj1446

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1446.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1446.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1446.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
bnj1446.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
bnj1446.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
bnj1446.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
bnj1446.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
bnj1446.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
bnj1446.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
bnj1446.10 𝑃 = 𝐻
bnj1446.11 𝑍 = ⟨ 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1446.12 𝑄 = ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
bnj1446.13 𝑊 = ⟨ 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
Assertion bnj1446 ( ( 𝑄𝑧 ) = ( 𝐺𝑊 ) → ∀ 𝑑 ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )

Proof

Step Hyp Ref Expression
1 bnj1446.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1446.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1446.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 bnj1446.4 ( 𝜏 ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
5 bnj1446.5 𝐷 = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 𝜏 }
6 bnj1446.6 ( 𝜓 ↔ ( 𝑅 FrSe 𝐴𝐷 ≠ ∅ ) )
7 bnj1446.7 ( 𝜒 ↔ ( 𝜓𝑥𝐷 ∧ ∀ 𝑦𝐷 ¬ 𝑦 𝑅 𝑥 ) )
8 bnj1446.8 ( 𝜏′[ 𝑦 / 𝑥 ] 𝜏 )
9 bnj1446.9 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
10 bnj1446.10 𝑃 = 𝐻
11 bnj1446.11 𝑍 = ⟨ 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
12 bnj1446.12 𝑄 = ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
13 bnj1446.13 𝑊 = ⟨ 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
14 nfcv 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 )
15 nfcv 𝑑 𝑦
16 nfre1 𝑑𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) )
17 16 nfab 𝑑 { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
18 3 17 nfcxfr 𝑑 𝐶
19 18 nfcri 𝑑 𝑓𝐶
20 nfv 𝑑 dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
21 19 20 nfan 𝑑 ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )
22 4 21 nfxfr 𝑑 𝜏
23 15 22 nfsbcw 𝑑 [ 𝑦 / 𝑥 ] 𝜏
24 8 23 nfxfr 𝑑 𝜏′
25 14 24 nfrex 𝑑𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′
26 25 nfab 𝑑 { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ }
27 9 26 nfcxfr 𝑑 𝐻
28 27 nfuni 𝑑 𝐻
29 10 28 nfcxfr 𝑑 𝑃
30 nfcv 𝑑 𝑥
31 nfcv 𝑑 𝐺
32 29 14 nfres 𝑑 ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) )
33 30 32 nfop 𝑑𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
34 11 33 nfcxfr 𝑑 𝑍
35 31 34 nffv 𝑑 ( 𝐺𝑍 )
36 30 35 nfop 𝑑𝑥 , ( 𝐺𝑍 ) ⟩
37 36 nfsn 𝑑 { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ }
38 29 37 nfun 𝑑 ( 𝑃 ∪ { ⟨ 𝑥 , ( 𝐺𝑍 ) ⟩ } )
39 12 38 nfcxfr 𝑑 𝑄
40 nfcv 𝑑 𝑧
41 39 40 nffv 𝑑 ( 𝑄𝑧 )
42 nfcv 𝑑 pred ( 𝑧 , 𝐴 , 𝑅 )
43 39 42 nfres 𝑑 ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) )
44 40 43 nfop 𝑑𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
45 13 44 nfcxfr 𝑑 𝑊
46 31 45 nffv 𝑑 ( 𝐺𝑊 )
47 41 46 nfeq 𝑑 ( 𝑄𝑧 ) = ( 𝐺𝑊 )
48 47 nf5ri ( ( 𝑄𝑧 ) = ( 𝐺𝑊 ) → ∀ 𝑑 ( 𝑄𝑧 ) = ( 𝐺𝑊 ) )