| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1446.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
| 2 |
|
bnj1446.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 3 |
|
bnj1446.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
| 4 |
|
bnj1446.4 |
⊢ ( 𝜏 ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ) |
| 5 |
|
bnj1446.5 |
⊢ 𝐷 = { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 𝜏 } |
| 6 |
|
bnj1446.6 |
⊢ ( 𝜓 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅ ) ) |
| 7 |
|
bnj1446.7 |
⊢ ( 𝜒 ↔ ( 𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀ 𝑦 ∈ 𝐷 ¬ 𝑦 𝑅 𝑥 ) ) |
| 8 |
|
bnj1446.8 |
⊢ ( 𝜏′ ↔ [ 𝑦 / 𝑥 ] 𝜏 ) |
| 9 |
|
bnj1446.9 |
⊢ 𝐻 = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ } |
| 10 |
|
bnj1446.10 |
⊢ 𝑃 = ∪ 𝐻 |
| 11 |
|
bnj1446.11 |
⊢ 𝑍 = 〈 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 12 |
|
bnj1446.12 |
⊢ 𝑄 = ( 𝑃 ∪ { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } ) |
| 13 |
|
bnj1446.13 |
⊢ 𝑊 = 〈 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 |
| 14 |
|
nfcv |
⊢ Ⅎ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) |
| 15 |
|
nfcv |
⊢ Ⅎ 𝑑 𝑦 |
| 16 |
|
nfre1 |
⊢ Ⅎ 𝑑 ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) |
| 17 |
16
|
nfab |
⊢ Ⅎ 𝑑 { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
| 18 |
3 17
|
nfcxfr |
⊢ Ⅎ 𝑑 𝐶 |
| 19 |
18
|
nfcri |
⊢ Ⅎ 𝑑 𝑓 ∈ 𝐶 |
| 20 |
|
nfv |
⊢ Ⅎ 𝑑 dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 21 |
19 20
|
nfan |
⊢ Ⅎ 𝑑 ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) |
| 22 |
4 21
|
nfxfr |
⊢ Ⅎ 𝑑 𝜏 |
| 23 |
15 22
|
nfsbcw |
⊢ Ⅎ 𝑑 [ 𝑦 / 𝑥 ] 𝜏 |
| 24 |
8 23
|
nfxfr |
⊢ Ⅎ 𝑑 𝜏′ |
| 25 |
14 24
|
nfrexw |
⊢ Ⅎ 𝑑 ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ |
| 26 |
25
|
nfab |
⊢ Ⅎ 𝑑 { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) 𝜏′ } |
| 27 |
9 26
|
nfcxfr |
⊢ Ⅎ 𝑑 𝐻 |
| 28 |
27
|
nfuni |
⊢ Ⅎ 𝑑 ∪ 𝐻 |
| 29 |
10 28
|
nfcxfr |
⊢ Ⅎ 𝑑 𝑃 |
| 30 |
|
nfcv |
⊢ Ⅎ 𝑑 𝑥 |
| 31 |
|
nfcv |
⊢ Ⅎ 𝑑 𝐺 |
| 32 |
29 14
|
nfres |
⊢ Ⅎ 𝑑 ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 33 |
30 32
|
nfop |
⊢ Ⅎ 𝑑 〈 𝑥 , ( 𝑃 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 34 |
11 33
|
nfcxfr |
⊢ Ⅎ 𝑑 𝑍 |
| 35 |
31 34
|
nffv |
⊢ Ⅎ 𝑑 ( 𝐺 ‘ 𝑍 ) |
| 36 |
30 35
|
nfop |
⊢ Ⅎ 𝑑 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 |
| 37 |
36
|
nfsn |
⊢ Ⅎ 𝑑 { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } |
| 38 |
29 37
|
nfun |
⊢ Ⅎ 𝑑 ( 𝑃 ∪ { 〈 𝑥 , ( 𝐺 ‘ 𝑍 ) 〉 } ) |
| 39 |
12 38
|
nfcxfr |
⊢ Ⅎ 𝑑 𝑄 |
| 40 |
|
nfcv |
⊢ Ⅎ 𝑑 𝑧 |
| 41 |
39 40
|
nffv |
⊢ Ⅎ 𝑑 ( 𝑄 ‘ 𝑧 ) |
| 42 |
|
nfcv |
⊢ Ⅎ 𝑑 pred ( 𝑧 , 𝐴 , 𝑅 ) |
| 43 |
39 42
|
nfres |
⊢ Ⅎ 𝑑 ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) |
| 44 |
40 43
|
nfop |
⊢ Ⅎ 𝑑 〈 𝑧 , ( 𝑄 ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 |
| 45 |
13 44
|
nfcxfr |
⊢ Ⅎ 𝑑 𝑊 |
| 46 |
31 45
|
nffv |
⊢ Ⅎ 𝑑 ( 𝐺 ‘ 𝑊 ) |
| 47 |
41 46
|
nfeq |
⊢ Ⅎ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) |
| 48 |
47
|
nf5ri |
⊢ ( ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) → ∀ 𝑑 ( 𝑄 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑊 ) ) |