Step |
Hyp |
Ref |
Expression |
1 |
|
bnj156.1 |
|- ( ze0 <-> ( f Fn 1o /\ ph' /\ ps' ) ) |
2 |
|
bnj156.2 |
|- ( ze1 <-> [. g / f ]. ze0 ) |
3 |
|
bnj156.3 |
|- ( ph1 <-> [. g / f ]. ph' ) |
4 |
|
bnj156.4 |
|- ( ps1 <-> [. g / f ]. ps' ) |
5 |
1
|
sbcbii |
|- ( [. g / f ]. ze0 <-> [. g / f ]. ( f Fn 1o /\ ph' /\ ps' ) ) |
6 |
|
sbc3an |
|- ( [. g / f ]. ( f Fn 1o /\ ph' /\ ps' ) <-> ( [. g / f ]. f Fn 1o /\ [. g / f ]. ph' /\ [. g / f ]. ps' ) ) |
7 |
|
bnj62 |
|- ( [. g / f ]. f Fn 1o <-> g Fn 1o ) |
8 |
3
|
bicomi |
|- ( [. g / f ]. ph' <-> ph1 ) |
9 |
4
|
bicomi |
|- ( [. g / f ]. ps' <-> ps1 ) |
10 |
7 8 9
|
3anbi123i |
|- ( ( [. g / f ]. f Fn 1o /\ [. g / f ]. ph' /\ [. g / f ]. ps' ) <-> ( g Fn 1o /\ ph1 /\ ps1 ) ) |
11 |
6 10
|
bitri |
|- ( [. g / f ]. ( f Fn 1o /\ ph' /\ ps' ) <-> ( g Fn 1o /\ ph1 /\ ps1 ) ) |
12 |
5 11
|
bitri |
|- ( [. g / f ]. ze0 <-> ( g Fn 1o /\ ph1 /\ ps1 ) ) |
13 |
2 12
|
bitri |
|- ( ze1 <-> ( g Fn 1o /\ ph1 /\ ps1 ) ) |