Metamath Proof Explorer


Theorem bnj156

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj156.1
|- ( ze0 <-> ( f Fn 1o /\ ph' /\ ps' ) )
bnj156.2
|- ( ze1 <-> [. g / f ]. ze0 )
bnj156.3
|- ( ph1 <-> [. g / f ]. ph' )
bnj156.4
|- ( ps1 <-> [. g / f ]. ps' )
Assertion bnj156
|- ( ze1 <-> ( g Fn 1o /\ ph1 /\ ps1 ) )

Proof

Step Hyp Ref Expression
1 bnj156.1
 |-  ( ze0 <-> ( f Fn 1o /\ ph' /\ ps' ) )
2 bnj156.2
 |-  ( ze1 <-> [. g / f ]. ze0 )
3 bnj156.3
 |-  ( ph1 <-> [. g / f ]. ph' )
4 bnj156.4
 |-  ( ps1 <-> [. g / f ]. ps' )
5 1 sbcbii
 |-  ( [. g / f ]. ze0 <-> [. g / f ]. ( f Fn 1o /\ ph' /\ ps' ) )
6 sbc3an
 |-  ( [. g / f ]. ( f Fn 1o /\ ph' /\ ps' ) <-> ( [. g / f ]. f Fn 1o /\ [. g / f ]. ph' /\ [. g / f ]. ps' ) )
7 bnj62
 |-  ( [. g / f ]. f Fn 1o <-> g Fn 1o )
8 3 bicomi
 |-  ( [. g / f ]. ph' <-> ph1 )
9 4 bicomi
 |-  ( [. g / f ]. ps' <-> ps1 )
10 7 8 9 3anbi123i
 |-  ( ( [. g / f ]. f Fn 1o /\ [. g / f ]. ph' /\ [. g / f ]. ps' ) <-> ( g Fn 1o /\ ph1 /\ ps1 ) )
11 6 10 bitri
 |-  ( [. g / f ]. ( f Fn 1o /\ ph' /\ ps' ) <-> ( g Fn 1o /\ ph1 /\ ps1 ) )
12 5 11 bitri
 |-  ( [. g / f ]. ze0 <-> ( g Fn 1o /\ ph1 /\ ps1 ) )
13 2 12 bitri
 |-  ( ze1 <-> ( g Fn 1o /\ ph1 /\ ps1 ) )