| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj581.3 |
|- ( ch <-> ( f Fn n /\ ph /\ ps ) ) |
| 2 |
|
bnj581.4 |
|- ( ph' <-> [. g / f ]. ph ) |
| 3 |
|
bnj581.5 |
|- ( ps' <-> [. g / f ]. ps ) |
| 4 |
|
bnj581.6 |
|- ( ch' <-> [. g / f ]. ch ) |
| 5 |
1
|
sbcbii |
|- ( [. g / f ]. ch <-> [. g / f ]. ( f Fn n /\ ph /\ ps ) ) |
| 6 |
|
sbc3an |
|- ( [. g / f ]. ( f Fn n /\ ph /\ ps ) <-> ( [. g / f ]. f Fn n /\ [. g / f ]. ph /\ [. g / f ]. ps ) ) |
| 7 |
|
bnj62 |
|- ( [. g / f ]. f Fn n <-> g Fn n ) |
| 8 |
7
|
bicomi |
|- ( g Fn n <-> [. g / f ]. f Fn n ) |
| 9 |
8 2 3
|
3anbi123i |
|- ( ( g Fn n /\ ph' /\ ps' ) <-> ( [. g / f ]. f Fn n /\ [. g / f ]. ph /\ [. g / f ]. ps ) ) |
| 10 |
6 9
|
bitr4i |
|- ( [. g / f ]. ( f Fn n /\ ph /\ ps ) <-> ( g Fn n /\ ph' /\ ps' ) ) |
| 11 |
4 5 10
|
3bitri |
|- ( ch' <-> ( g Fn n /\ ph' /\ ps' ) ) |