Description: Technical lemma for bnj580 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) Remove unnecessary distinct variable conditions. (Revised by Andrew Salmon, 9-Jul-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj581.3 | |- ( ch <-> ( f Fn n /\ ph /\ ps ) ) |
|
bnj581.4 | |- ( ph' <-> [. g / f ]. ph ) |
||
bnj581.5 | |- ( ps' <-> [. g / f ]. ps ) |
||
bnj581.6 | |- ( ch' <-> [. g / f ]. ch ) |
||
Assertion | bnj581 | |- ( ch' <-> ( g Fn n /\ ph' /\ ps' ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj581.3 | |- ( ch <-> ( f Fn n /\ ph /\ ps ) ) |
|
2 | bnj581.4 | |- ( ph' <-> [. g / f ]. ph ) |
|
3 | bnj581.5 | |- ( ps' <-> [. g / f ]. ps ) |
|
4 | bnj581.6 | |- ( ch' <-> [. g / f ]. ch ) |
|
5 | 1 | sbcbii | |- ( [. g / f ]. ch <-> [. g / f ]. ( f Fn n /\ ph /\ ps ) ) |
6 | sbc3an | |- ( [. g / f ]. ( f Fn n /\ ph /\ ps ) <-> ( [. g / f ]. f Fn n /\ [. g / f ]. ph /\ [. g / f ]. ps ) ) |
|
7 | bnj62 | |- ( [. g / f ]. f Fn n <-> g Fn n ) |
|
8 | 7 | bicomi | |- ( g Fn n <-> [. g / f ]. f Fn n ) |
9 | 8 2 3 | 3anbi123i | |- ( ( g Fn n /\ ph' /\ ps' ) <-> ( [. g / f ]. f Fn n /\ [. g / f ]. ph /\ [. g / f ]. ps ) ) |
10 | 6 9 | bitr4i | |- ( [. g / f ]. ( f Fn n /\ ph /\ ps ) <-> ( g Fn n /\ ph' /\ ps' ) ) |
11 | 4 5 10 | 3bitri | |- ( ch' <-> ( g Fn n /\ ph' /\ ps' ) ) |