| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj591.1 |
|- ( th <-> ( ( n e. D /\ ch /\ ch' ) -> ( f ` j ) = ( g ` j ) ) ) |
| 2 |
1
|
sbcbii |
|- ( [. k / j ]. th <-> [. k / j ]. ( ( n e. D /\ ch /\ ch' ) -> ( f ` j ) = ( g ` j ) ) ) |
| 3 |
|
vex |
|- k e. _V |
| 4 |
|
fveq2 |
|- ( j = k -> ( f ` j ) = ( f ` k ) ) |
| 5 |
|
fveq2 |
|- ( j = k -> ( g ` j ) = ( g ` k ) ) |
| 6 |
4 5
|
eqeq12d |
|- ( j = k -> ( ( f ` j ) = ( g ` j ) <-> ( f ` k ) = ( g ` k ) ) ) |
| 7 |
6
|
imbi2d |
|- ( j = k -> ( ( ( n e. D /\ ch /\ ch' ) -> ( f ` j ) = ( g ` j ) ) <-> ( ( n e. D /\ ch /\ ch' ) -> ( f ` k ) = ( g ` k ) ) ) ) |
| 8 |
3 7
|
sbcie |
|- ( [. k / j ]. ( ( n e. D /\ ch /\ ch' ) -> ( f ` j ) = ( g ` j ) ) <-> ( ( n e. D /\ ch /\ ch' ) -> ( f ` k ) = ( g ` k ) ) ) |
| 9 |
2 8
|
bitri |
|- ( [. k / j ]. th <-> ( ( n e. D /\ ch /\ ch' ) -> ( f ` k ) = ( g ` k ) ) ) |