| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvex |
|- ( # ` dom c ) e. _V |
| 2 |
|
oveq2 |
|- ( n = ( # ` dom c ) -> ( X ^ n ) = ( X ^ ( # ` dom c ) ) ) |
| 3 |
|
oveq1 |
|- ( n = ( # ` dom c ) -> ( n _C m ) = ( ( # ` dom c ) _C m ) ) |
| 4 |
|
oveq1 |
|- ( n = ( # ` dom c ) -> ( n - m ) = ( ( # ` dom c ) - m ) ) |
| 5 |
4
|
oveq1d |
|- ( n = ( # ` dom c ) -> ( ( n - m ) + 1 ) = ( ( ( # ` dom c ) - m ) + 1 ) ) |
| 6 |
5
|
oveq2d |
|- ( n = ( # ` dom c ) -> ( ( c ` m ) / ( ( n - m ) + 1 ) ) = ( ( c ` m ) / ( ( ( # ` dom c ) - m ) + 1 ) ) ) |
| 7 |
3 6
|
oveq12d |
|- ( n = ( # ` dom c ) -> ( ( n _C m ) x. ( ( c ` m ) / ( ( n - m ) + 1 ) ) ) = ( ( ( # ` dom c ) _C m ) x. ( ( c ` m ) / ( ( ( # ` dom c ) - m ) + 1 ) ) ) ) |
| 8 |
7
|
sumeq2sdv |
|- ( n = ( # ` dom c ) -> sum_ m e. dom c ( ( n _C m ) x. ( ( c ` m ) / ( ( n - m ) + 1 ) ) ) = sum_ m e. dom c ( ( ( # ` dom c ) _C m ) x. ( ( c ` m ) / ( ( ( # ` dom c ) - m ) + 1 ) ) ) ) |
| 9 |
2 8
|
oveq12d |
|- ( n = ( # ` dom c ) -> ( ( X ^ n ) - sum_ m e. dom c ( ( n _C m ) x. ( ( c ` m ) / ( ( n - m ) + 1 ) ) ) ) = ( ( X ^ ( # ` dom c ) ) - sum_ m e. dom c ( ( ( # ` dom c ) _C m ) x. ( ( c ` m ) / ( ( ( # ` dom c ) - m ) + 1 ) ) ) ) ) |
| 10 |
1 9
|
csbie |
|- [_ ( # ` dom c ) / n ]_ ( ( X ^ n ) - sum_ m e. dom c ( ( n _C m ) x. ( ( c ` m ) / ( ( n - m ) + 1 ) ) ) ) = ( ( X ^ ( # ` dom c ) ) - sum_ m e. dom c ( ( ( # ` dom c ) _C m ) x. ( ( c ` m ) / ( ( ( # ` dom c ) - m ) + 1 ) ) ) ) |
| 11 |
|
oveq2 |
|- ( m = k -> ( n _C m ) = ( n _C k ) ) |
| 12 |
|
fveq2 |
|- ( m = k -> ( c ` m ) = ( c ` k ) ) |
| 13 |
|
oveq2 |
|- ( m = k -> ( n - m ) = ( n - k ) ) |
| 14 |
13
|
oveq1d |
|- ( m = k -> ( ( n - m ) + 1 ) = ( ( n - k ) + 1 ) ) |
| 15 |
12 14
|
oveq12d |
|- ( m = k -> ( ( c ` m ) / ( ( n - m ) + 1 ) ) = ( ( c ` k ) / ( ( n - k ) + 1 ) ) ) |
| 16 |
11 15
|
oveq12d |
|- ( m = k -> ( ( n _C m ) x. ( ( c ` m ) / ( ( n - m ) + 1 ) ) ) = ( ( n _C k ) x. ( ( c ` k ) / ( ( n - k ) + 1 ) ) ) ) |
| 17 |
16
|
cbvsumv |
|- sum_ m e. dom c ( ( n _C m ) x. ( ( c ` m ) / ( ( n - m ) + 1 ) ) ) = sum_ k e. dom c ( ( n _C k ) x. ( ( c ` k ) / ( ( n - k ) + 1 ) ) ) |
| 18 |
|
dmeq |
|- ( c = g -> dom c = dom g ) |
| 19 |
|
fveq1 |
|- ( c = g -> ( c ` k ) = ( g ` k ) ) |
| 20 |
19
|
oveq1d |
|- ( c = g -> ( ( c ` k ) / ( ( n - k ) + 1 ) ) = ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) |
| 21 |
20
|
oveq2d |
|- ( c = g -> ( ( n _C k ) x. ( ( c ` k ) / ( ( n - k ) + 1 ) ) ) = ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) |
| 22 |
21
|
adantr |
|- ( ( c = g /\ k e. dom c ) -> ( ( n _C k ) x. ( ( c ` k ) / ( ( n - k ) + 1 ) ) ) = ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) |
| 23 |
18 22
|
sumeq12dv |
|- ( c = g -> sum_ k e. dom c ( ( n _C k ) x. ( ( c ` k ) / ( ( n - k ) + 1 ) ) ) = sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) |
| 24 |
17 23
|
eqtrid |
|- ( c = g -> sum_ m e. dom c ( ( n _C m ) x. ( ( c ` m ) / ( ( n - m ) + 1 ) ) ) = sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) |
| 25 |
24
|
oveq2d |
|- ( c = g -> ( ( X ^ n ) - sum_ m e. dom c ( ( n _C m ) x. ( ( c ` m ) / ( ( n - m ) + 1 ) ) ) ) = ( ( X ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) ) |
| 26 |
25
|
csbeq2dv |
|- ( c = g -> [_ ( # ` dom c ) / n ]_ ( ( X ^ n ) - sum_ m e. dom c ( ( n _C m ) x. ( ( c ` m ) / ( ( n - m ) + 1 ) ) ) ) = [_ ( # ` dom c ) / n ]_ ( ( X ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) ) |
| 27 |
10 26
|
eqtr3id |
|- ( c = g -> ( ( X ^ ( # ` dom c ) ) - sum_ m e. dom c ( ( ( # ` dom c ) _C m ) x. ( ( c ` m ) / ( ( ( # ` dom c ) - m ) + 1 ) ) ) ) = [_ ( # ` dom c ) / n ]_ ( ( X ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) ) |
| 28 |
18
|
fveq2d |
|- ( c = g -> ( # ` dom c ) = ( # ` dom g ) ) |
| 29 |
28
|
csbeq1d |
|- ( c = g -> [_ ( # ` dom c ) / n ]_ ( ( X ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) = [_ ( # ` dom g ) / n ]_ ( ( X ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) ) |
| 30 |
27 29
|
eqtrd |
|- ( c = g -> ( ( X ^ ( # ` dom c ) ) - sum_ m e. dom c ( ( ( # ` dom c ) _C m ) x. ( ( c ` m ) / ( ( ( # ` dom c ) - m ) + 1 ) ) ) ) = [_ ( # ` dom g ) / n ]_ ( ( X ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) ) |
| 31 |
30
|
cbvmptv |
|- ( c e. _V |-> ( ( X ^ ( # ` dom c ) ) - sum_ m e. dom c ( ( ( # ` dom c ) _C m ) x. ( ( c ` m ) / ( ( ( # ` dom c ) - m ) + 1 ) ) ) ) ) = ( g e. _V |-> [_ ( # ` dom g ) / n ]_ ( ( X ^ n ) - sum_ k e. dom g ( ( n _C k ) x. ( ( g ` k ) / ( ( n - k ) + 1 ) ) ) ) ) |
| 32 |
|
eqid |
|- wrecs ( < , NN0 , ( c e. _V |-> ( ( X ^ ( # ` dom c ) ) - sum_ m e. dom c ( ( ( # ` dom c ) _C m ) x. ( ( c ` m ) / ( ( ( # ` dom c ) - m ) + 1 ) ) ) ) ) ) = wrecs ( < , NN0 , ( c e. _V |-> ( ( X ^ ( # ` dom c ) ) - sum_ m e. dom c ( ( ( # ` dom c ) _C m ) x. ( ( c ` m ) / ( ( ( # ` dom c ) - m ) + 1 ) ) ) ) ) ) |
| 33 |
31 32
|
bpolylem |
|- ( ( N e. NN0 /\ X e. CC ) -> ( N BernPoly X ) = ( ( X ^ N ) - sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( ( k BernPoly X ) / ( ( N - k ) + 1 ) ) ) ) ) |