Metamath Proof Explorer


Theorem bpolyval

Description: The value of the Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014)

Ref Expression
Assertion bpolyval N0XNBernPolyX=XNk=0N1(Nk)kBernPolyXN-k+1

Proof

Step Hyp Ref Expression
1 fvex domcV
2 oveq2 n=domcXn=Xdomc
3 oveq1 n=domc(nm)=(domcm)
4 oveq1 n=domcnm=domcm
5 4 oveq1d n=domcn-m+1=domc-m+1
6 5 oveq2d n=domccmn-m+1=cmdomc-m+1
7 3 6 oveq12d n=domc(nm)cmn-m+1=(domcm)cmdomc-m+1
8 7 sumeq2sdv n=domcmdomc(nm)cmn-m+1=mdomc(domcm)cmdomc-m+1
9 2 8 oveq12d n=domcXnmdomc(nm)cmn-m+1=Xdomcmdomc(domcm)cmdomc-m+1
10 1 9 csbie domc/nXnmdomc(nm)cmn-m+1=Xdomcmdomc(domcm)cmdomc-m+1
11 oveq2 m=k(nm)=(nk)
12 fveq2 m=kcm=ck
13 oveq2 m=knm=nk
14 13 oveq1d m=kn-m+1=n-k+1
15 12 14 oveq12d m=kcmn-m+1=ckn-k+1
16 11 15 oveq12d m=k(nm)cmn-m+1=(nk)ckn-k+1
17 16 cbvsumv mdomc(nm)cmn-m+1=kdomc(nk)ckn-k+1
18 dmeq c=gdomc=domg
19 fveq1 c=gck=gk
20 19 oveq1d c=gckn-k+1=gkn-k+1
21 20 oveq2d c=g(nk)ckn-k+1=(nk)gkn-k+1
22 21 adantr c=gkdomc(nk)ckn-k+1=(nk)gkn-k+1
23 18 22 sumeq12dv c=gkdomc(nk)ckn-k+1=kdomg(nk)gkn-k+1
24 17 23 eqtrid c=gmdomc(nm)cmn-m+1=kdomg(nk)gkn-k+1
25 24 oveq2d c=gXnmdomc(nm)cmn-m+1=Xnkdomg(nk)gkn-k+1
26 25 csbeq2dv c=gdomc/nXnmdomc(nm)cmn-m+1=domc/nXnkdomg(nk)gkn-k+1
27 10 26 eqtr3id c=gXdomcmdomc(domcm)cmdomc-m+1=domc/nXnkdomg(nk)gkn-k+1
28 18 fveq2d c=gdomc=domg
29 28 csbeq1d c=gdomc/nXnkdomg(nk)gkn-k+1=domg/nXnkdomg(nk)gkn-k+1
30 27 29 eqtrd c=gXdomcmdomc(domcm)cmdomc-m+1=domg/nXnkdomg(nk)gkn-k+1
31 30 cbvmptv cVXdomcmdomc(domcm)cmdomc-m+1=gVdomg/nXnkdomg(nk)gkn-k+1
32 eqid wrecs<0cVXdomcmdomc(domcm)cmdomc-m+1=wrecs<0cVXdomcmdomc(domcm)cmdomc-m+1
33 31 32 bpolylem N0XNBernPolyX=XNk=0N1(Nk)kBernPolyXN-k+1